1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
|
#' @include NMFfit-class.R
#' @include heatmaps.R
NULL
#' \code{isNMFfit} tells if an object results from an NMF fit.
#'
#' @details \emph{isNMFfit} checks if \code{object} inherits from class
#' \code{\linkS4class{NMFfit}} or \code{\linkS4class{NMFfitX}}, which are
#' the two types of objects returned by the function \code{\link{nmf}}.
#' If \code{object} is a plain \code{list} and \code{recursive=TRUE}, then
#' the test is performed on each element of the list, and the return value
#' is a logical vector (or a list if \code{object} is a list of list) of
#' the same length as \code{object}.
#'
#' @export
#' @rdname types
#' @param object any R object.
#' @param recursive if \code{TRUE} and \code{object} is a plain list then
#' \code{isNMFfit} tests each element of the list.
#' Note that the recursive test only applies in the case of lists that are
#' not themselves NMFfit objects, like \code{NMFfitXn} objects for which
#' the result of \code{isNMFfit} will always be \code{TRUE}, although they are
#' list objects (a single logical value).
#'
#' @return \code{isNMFfit} returns a \code{logical} vector (or a list if
#' \code{object} is a list of list) of the same length as \code{object}.
#'
#' @seealso \code{\linkS4class{NMFfit}}, \code{\linkS4class{NMFfitX}},
#' \code{\linkS4class{NMFfitXn}}
#' @examples
#'
#' ## Testing results of fits
#' # generate a random
#' V <- rmatrix(20, 10)
#'
#' # single run -- using very low value for maxIter to speed up the example
#' res <- nmf(V, 3, maxIter=3L)
#' isNMFfit(res)
#'
#' # multiple runs - keeping single fit
#' resm <- nmf(V, 3, nrun=2, maxIter=3L)
#' isNMFfit(resm)
#'
#' # with a list of results
#' isNMFfit(list(res, resm, 'not a result'))
#' isNMFfit(list(res, resm, 'not a result'), recursive=FALSE)
#'
isNMFfit <- function(object, recursive=TRUE){
res <- is(object, 'NMFfit') || is(object, 'NMFfitX')
# if the object is not a NMF result: apply to each element if a list (only in recursive mode)
if( !res && recursive && is.list(object) )
sapply(object, isNMFfit)
else
res
}
#' Class for Storing Heterogeneous NMF fits
#'
#' @description
#' This class wraps a list of NMF fit objects, which may come from different
#' runs of the function \code{\link{nmf}}, using different parameters, methods, etc..
#' These can be either from a single run (NMFfit) or multiple runs (NMFfitX).
#'
#' Note that its definition/interface is very likely to change in the future.
#' @export
#'
setClass('NMFList'
, representation(
runtime='proc_time'
)
, contains='namedList'
, validity=function(object){
# the list must only contains NMFfit objects of the same dimensions
ok <- isNMFfit(object)
if( !is.logical(ok) )
return("Could not validate elements in list: input is probably a complex structure of lists.")
pb <- which(!ok)
if( length(pb) ){
return(paste("invalid class for element(s)"
, str_out(i)
, "of input list [all elements must be fitted NMF models]"))
}
}
)
#' Show method for objects of class \code{NMFList}
#' @export
setMethod('show', 'NMFList',
function(object)
{
cat("<Object of class:", class(object), ">\n")
cat("Length:", length(object), "\n")
if( length(object) > 0 ) cat("Method(s):", algorithm(object, string=TRUE), "\n")
# show totaltime if present
tt <- runtime(object)
if( length(tt) > 0 ){
cat("Total timing:\n"); show(tt);
}
}
)
#' Returns the method names used to compute the NMF fits in the list.
#' It returns \code{NULL} if the list is empty.
#'
#' @param string a logical that indicate whether the names should be collapsed
#' into a comma-separated string.
#' @param unique a logical that indicates whether the result should contain the
#' set of method names, removing duplicated names.
#' This argument is forced to \code{TRUE} when \code{string=TRUE}.
#'
setMethod('algorithm', 'NMFList',
function(object, string=FALSE, unique=TRUE){
l <- length(object)
if( string ) unique <- TRUE
if( l == 0 ) NULL
else if( l == 1 ) algorithm(object[[1]])
else{
# build the vector of the algorithm names (with no repeat)
m <- sapply(object, algorithm)
if( unique ) m <- unique(m)
if( string ) m <- paste(m, collapse=', ')
m
}
}
)
.seqtime <- function(object){
if( length(object) == 0 ) return(NULL)
# sum up the time across the runs
t.mat <- sapply(object, function(x){
if( is(x, 'NMFfitXn') ) runtime.all(x)
else runtime(x)
})
res <- rowSums(t.mat)
class(res) <- 'proc_time'
res
}
#' Returns the CPU time that would be required to sequentially compute all NMF
#' fits stored in \code{object}.
#'
#' This method calls the function \code{runtime} on each fit and sum up the
#' results.
#' It returns \code{NULL} on an empty object.
setMethod('seqtime', 'NMFList',
function(object){
if( length(object) == 0 ) return(NULL)
# sum up the time across the runs
.seqtime(object)
}
)
#' Returns the CPU time required to compute all NMF fits in the list.
#' It returns \code{NULL} if the list is empty.
#' If no timing data are available, the sequential time is returned.
#'
#' @param all logical that indicates if the CPU time of each fit should be
#' returned (\code{TRUE}) or only the total CPU time used to compute all
#' the fits in \code{object}.
setMethod('runtime', 'NMFList',
function(object, all=FALSE){
if( !all ){
t <- slot(object, 'runtime')
if( length(t)==0 ) seqtime(object) else t
}else
sapply(object, runtime)
}
)
as.NMFList <- function(..., unlist=FALSE){
arg.l <- list(...)
if( length(arg.l) == 1L && is.list(arg.l[[1]]) && !is(arg.l[[1]], 'NMFfitX') )
arg.l <- arg.l[[1]]
# unlist if required
if( unlist )
arg.l <- unlist(arg.l)
# create a NMFList object from the input list
new('NMFList', arg.l)
}
#' Virtual Class to Handle Results from Multiple Runs of NMF Algorithms
#'
#' This class defines a common interface to handle the results from multiple
#' runs of a single NMF algorithm, performed with the \code{\link{nmf}} method.
#'
#' Currently, this interface is implemented by two classes,
#' \code{\linkS4class{NMFfitX1}} and \code{\linkS4class{NMFfitXn}}, which
#' respectively handle the case where only the best fit is kept, and the case
#' where the list of all the fits is returned.
#'
#' See \code{\link{nmf}} for more details on the method arguments.
#'
#' @slot runtime.all Object of class \code{\link[=proc.time]{proc_time}} that
#' contains CPU times required to perform all the runs.
#'
#' @export
#' @family multipleNMF
#' @examples
#'
#' # generate a synthetic dataset with known classes
#' n <- 20; counts <- c(5, 2, 3);
#' V <- syntheticNMF(n, counts)
#'
#' # perform multiple runs of one algorithm (default is to keep only best fit)
#' res <- nmf(V, 3, nrun=3)
#' res
#'
#' # plot a heatmap of the consensus matrix
#' \dontrun{ consensusmap(res) }
#'
setClass('NMFfitX'
, representation(
runtime.all = 'proc_time' # running time to perform all the NMF runs
)
, contains='VIRTUAL'
)
#' Returns the CPU time required to compute all the NMF runs.
#' It returns \code{NULL} if no CPU data is available.
setMethod('runtime.all', 'NMFfitX',
function(object){
t <- slot(object, 'runtime.all')
if( length(t) > 0 ) t else NULL
}
)
#' Returns the number of NMF runs performed to create \code{object}.
#'
#' It is a pure virtual method defined to ensure \code{nrun} is defined
#' for sub-classes of \code{NMFfitX}, which throws an error if called.
#'
#' Note that because the \code{\link{nmf}} function allows to run the NMF
#' computation keeping only the best fit, \code{nrun} may return a value
#' greater than one, while only the result of the best run is stored in
#' the object (cf. option \code{'k'} in method \code{\link{nmf}}).
setMethod('nrun', 'NMFfitX',
function(object){
stop("NMF::NMFfitX - missing definition for pure virtual method 'nrun' in class '", class(object), "'")
}
)
#' This method always returns 1, since an \code{NMFfit} object is obtained
#' from a single NMF run.
setMethod('nrun', 'NMFfit',
function(object){
1L
}
)
#' \code{consensus} is an S4 generic that computes/returns the consensus matrix
#' from a model object, which is the mean connectivity matrix of all the runs.
#'
#' The consensus matrix has been proposed by \cite{Brunet2004} to help
#' visualising and measuring the stability of the clusters obtained by
#' NMF approaches.
#' For objects of class \code{NMF} (e.g. results of a single NMF run, or NMF
#' models), the consensus matrix reduces to the connectivity matrix.
#'
#' @rdname connectivity
#' @export
setGeneric('consensus', function(object, ...) standardGeneric('consensus') )
#' Pure virtual method defined to ensure \code{consensus} is defined for sub-classes of \code{NMFfitX}.
#' It throws an error if called.
setMethod('consensus', 'NMFfitX',
function(object, ...){
stop("NMF::NMFfitX - missing definition for pure virtual method 'consensus' in class '", class(object), "'")
}
)
#' This method is provided for completeness and is identical to
#' \code{\link{connectivity}}, and returns the connectivity matrix,
#' which, in the case of a single NMF model, is also the consensus matrix.
setMethod('consensus', 'NMF',
function(object, ...){
connectivity(object, ...)
}
)
#' Hierarchical Clustering of a Consensus Matrix
#'
#' The function \code{consensushc} computes the hierarchical clustering of
#' a consensus matrix, using the matrix itself as a similarity matrix and
#' average linkage.
#' It is
#'
#' @param object a matrix or an \code{NMFfitX} object, as returned by multiple
#' NMF runs.
#' @param ... extra arguments passed to next method calls
#'
#' @return an object of class \code{dendrogram} or \code{hclust} depending on the
#' value of argument \code{dendrogram}.
#'
#' @inline
#' @export
setGeneric('consensushc', function(object, ...) standardGeneric('consensushc'))
#' Workhorse method for matrices.
#'
#' @param method linkage method passed to \code{\link{hclust}}.
#' @param dendrogram a logical that specifies if the result of the hierarchical
#' clustering (en \code{hclust} object) should be converted into a dendrogram.
#' Default value is \code{TRUE}.
setMethod('consensushc', 'matrix',
function(object, method='average', dendrogram=TRUE){
# hierachical clustering based on the connectivity matrix
hc <- hclust(as.dist(1-object), method=method)
# convert into a dendrogram if requested
if( dendrogram ) as.dendrogram(hc)
else hc
}
)
#' Compute the hierarchical clustering on the connectivity matrix of \code{object}.
setMethod('consensushc', 'NMF',
function(object, ...){
# hierachical clustering based on the connectivity matrix
consensushc(connectivity(object), ...)
}
)
#' Compute the hierarchical clustering on the consensus matrix of \code{object},
#' or on the connectivity matrix of the best fit in \code{object}.
#'
#' @param what character string that indicates which matrix to use in the
#' computation.
#'
setMethod('consensushc', 'NMFfitX',
function(object, what=c('consensus', 'fit'), ...){
what <- match.arg(what)
if( what == 'consensus' ){
# hierachical clustering on the consensus matrix
consensushc(consensus(object), ...)
}else if( what == 'fit' )
consensushc(fit(object), ...)
}
)
#' Returns the cluster membership index from an NMF model fitted with multiple
#' runs.
#'
#' Besides the type of clustering available for any NMF models
#' (\code{'columns', 'rows', 'samples', 'features'}), this method can return
#' the cluster membership index based on the consensus matrix, computed from
#' the multiple NMF runs.
#'
#' Argument \code{what} accepts the following extra types:
#' \describe{
#' \item{\code{'chc'}}{ returns the cluster membership based on the
#' hierarchical clustering of the consensus matrix, as performed by
#' \code{\link{consensushc}}.}
#' \item{\code{'consensus'}}{ same as \code{'chc'} but the levels of the membership
#' index are re-labeled to match the order of the clusters as they would be displayed on the
#' associated dendrogram, as re-ordered on the default annotation track in consensus
#' heatmap produced by \code{\link{consensusmap}}.}
#' }
#'
setMethod('predict', signature(object='NMFfitX'),
function(object, what=c('columns', 'rows', 'samples', 'features', 'consensus', 'chc'), dmatrix = FALSE, ...){
# determine which prediction to do
what <- match.arg(what)
res <- if( what %in% c('consensus', 'chc') ){
# build the tree from consensus matrix
h <- consensushc(object, what='consensus', dendrogram=FALSE)
# extract membership from the tree
cl <- cutree(h, k=nbasis(object))
# rename the cluster ids in the case of a consensus map
if( what != 'chc' ){
dr <- as.dendrogram(h)
o <- order.dendrogram(reorder(dr, rowMeans(consensus(object), na.rm=TRUE)))
cl <- setNames(match(cl, unique(cl[o])), names(cl))
}
res <- as.factor(cl)
# add dissimilarity matrix if requested
if( dmatrix ){
attr(res, 'dmatrix') <- 1 - consensus(object)
}
if( what != 'chc' ) attr(res, 'iOrd') <- o
# return
res
}
else predict(fit(object), what=what, ..., dmatrix = dmatrix)
attr(res, 'what') <- what
res
}
)
#' Returns the model object that achieves the lowest residual approximation
#' error across all the runs.
#'
#' It is a pure virtual method defined to ensure \code{fit} is defined
#' for sub-classes of \code{NMFfitX}, which throws an error if called.
setMethod('fit', 'NMFfitX',
function(object){
stop("NMF::NMFfitX - missing definition for pure virtual method 'fit' in class '", class(object), "'")
}
)
#' Returns the fit object that achieves the lowest residual approximation
#' error across all the runs.
#'
#' It is a pure virtual method defined to ensure \code{minfit} is defined
#' for sub-classes of \code{NMFfitX}, which throws an error if called.
setMethod('minfit', 'NMFfitX',
function(object){
stop("NMF::NMFfitX - missing definition for pure virtual method 'minfit' in class '", class(object), "'")
}
)
#' Show method for objects of class \code{NMFfitX}
#' @export
setMethod('show', 'NMFfitX',
function(object){
cat("<Object of class:", class(object), ">\n")
# name of the algorithm
cat(" Method:", algorithm(object), "\n")
# number of runs
cat(" Runs: ", nrun(object),"\n");
# initial state
cat(" RNG:\n ", RNGstr(getRNG1(object)),"\n");
if( nrun(object) > 0 ){
# show total timing
cat(" Total timing:\n"); show(runtime.all(object));
}
}
)
#' Extracting RNG Data from NMF Objects
#'
#' The \code{\link{nmf}} function returns objects that contain embedded RNG data,
#' that can be used to exactly reproduce any computation.
#' These data can be extracted using dedicated methods for the S4 generics
#' \code{\link[rngtools]{getRNG}} and \code{\link[rngtools]{getRNG1}}.
#'
#' @inheritParams rngtools::getRNG
#' @inheritParams rngtools::getRNG1
#'
#' @inline
#' @rdname RNG
#' @export
setGeneric('getRNG1', package='rngtools')
#' Returns the RNG settings used for the first NMF run of multiple NMF runs.
#'
#' @examples
#' # For multiple NMF runs, the RNG settings used for the first run is also stored
#' V <- rmatrix(20,10)
#' res <- nmf(V, 3, nrun=3)
#' # RNG used for the best fit
#' getRNG(res)
#' # RNG used for the first of all fits
#' getRNG1(res)
#' # they may differ if the best fit is not the first one
#' rng.equal(res, getRNG1(res))
#'
setMethod('getRNG1', signature(object='NMFfitX'),
function(object){
stop("NMF::getRNG1(", class(object), ") - Unimplemented pure virtual method: could not extract initial RNG settings.")
}
)
#' Compares two NMF models when at least one comes from multiple NMF runs.
setMethod('nmf.equal', signature(x='NMFfitX', y='NMF'),
function(x, y, ...){
nmf.equal(fit(x), y, ...)
}
)
#' Compares two NMF models when at least one comes from multiple NMF runs.
setMethod('nmf.equal', signature(x='NMF', y='NMFfitX'),
function(x, y, ...){
nmf.equal(x, fit(y), ...)
}
)
#' Returns the residuals achieved by the best fit object, i.e. the lowest
#' residual approximation error achieved across all NMF runs.
setMethod('residuals', signature(object='NMFfitX'),
function(object, ...){
residuals(minfit(object), ...)
}
)
#' Returns the deviance achieved by the best fit object, i.e. the lowest
#' deviance achieved across all NMF runs.
setMethod('deviance', signature(object='NMFfitX'),
function(object, ...){
deviance(minfit(object), ...)
}
)
#########################################################
# END_NMFfitX
#########################################################
#' Structure for Storing the Best Fit Amongst Multiple NMF Runs
#'
#' This class is used to return the result from a multiple run of a single NMF
#' algorithm performed with function \code{nmf} with the -- default -- option
#' \code{keep.all=FALSE} (cf. \code{\link{nmf}}).
#'
#' It extends both classes \code{\linkS4class{NMFfitX}} and
#' \code{\linkS4class{NMFfit}}, and stores a the result of the best fit in its
#' \code{NMFfit} structure.
#'
#' Beside the best fit, this class allows to hold data about the computation of
#' the multiple runs, such as the number of runs, the CPU time used to perform
#' all the runs, as well as the consensus matrix.
#'
#' Due to the inheritance from class \code{NMFfit}, objects of class
#' \code{NMFfitX1} can be handled exactly as the results of single NMF run --
#' as if only the best run had been performed.
#'
#'
#' @slot consensus object of class \code{matrix} used to store the
#' consensus matrix based on all the runs.
#'
#' @slot nrun an \code{integer} that contains the number of runs
#' performed to compute the object.
#'
#' @slot rng1 an object that contains RNG settings used for the first
#' run. See \code{\link{getRNG1}}.
#'
#' @export
#' @family multipleNMF
#' @examples
#'
#' # generate a synthetic dataset with known classes
#' n <- 15; counts <- c(5, 2, 3);
#' V <- syntheticNMF(n, counts)
#'
#' # get the class factor
#' groups <- V$pData$Group
#'
#' # perform multiple runs of one algorithm, keeping only the best fit (default)
#' #i.e.: the implicit nmf options are .options=list(keep.all=FALSE) or .options='-k'
#' res <- nmf(V, 3, nrun=2)
#' res
#'
#' # compute summary measures
#' summary(res)
#' # get more info
#' summary(res, target=V, class=groups)
#'
#' # show computational time
#' runtime.all(res)
#'
#' # plot the consensus matrix, as stored (pre-computed) in the object
#' \dontrun{ consensusmap(res, annCol=groups) }
#'
setClass('NMFfitX1'
, representation(
#fit = 'NMFfit' # holds the best fit from all the runs
consensus = 'matrix' # average connectivity matrix of all the NMF runs
, nrun = 'integer'
, rng1 = 'ANY'
)
, contains=c('NMFfitX', 'NMFfit')
, prototype=prototype(
consensus = matrix(as.numeric(NA),0,0)
, nrun = as.integer(0)
)
)
#' Show method for objects of class \code{NMFfitX1}
#' @export
setMethod('show', 'NMFfitX1',
function(object){
callNextMethod(object)
# show details of the best fit
#cat(" # Best fit:\n ")
#s <- capture.output(show(fit(object)))
#cat(s, sep="\n |")
}
)
#' Returns the number of NMF runs performed, amongst which \code{object} was
#' selected as the best fit.
setMethod('nrun', 'NMFfitX1',
function(object){
slot(object,'nrun')
}
)
#' Returns the consensus matrix computed while performing all NMF runs,
#' amongst which \code{object} was selected as the best fit.
#'
#' The result is the matrix stored in slot \sQuote{consensus}.
#' This method returns \code{NULL} if the consensus matrix is empty.
setMethod('consensus', signature(object='NMFfitX1'),
function(object, no.attrib = FALSE){
C <- slot(object, 'consensus')
if( length(C) > 0 ){
if( !no.attrib ){
class(C) <- c(class(C), 'NMF.consensus')
attr(C, 'nrun') <- nrun(object)
attr(C, 'nbasis') <- nbasis(object)
}
C
}else NULL
}
)
#' Returns the fit object associated with the best fit, amongst all the
#' runs performed when fitting \code{object}.
#'
#' Since \code{NMFfitX1} objects only hold the best fit, this method simply
#' returns \code{object} coerced into an \code{NMFfit} object.
setMethod('minfit', 'NMFfitX1',
function(object){
# coerce the object into a NMFfit object
as(object, 'NMFfit')
}
)
#' Returns the model object associated with the best fit, amongst all the
#' runs performed when fitting \code{object}.
#'
#' Since \code{NMFfitX1} objects only hold the best fit, this method simply
#' returns the NMF model fitted by \code{object} -- that is stored in slot
#' \sQuote{fit}.
setMethod('fit', signature(object='NMFfitX1'),
function(object){
slot(object, 'fit')
}
)
#' Returns the RNG settings used to compute the first of all NMF runs, amongst
#' which \code{object} was selected as the best fit.
setMethod('getRNG1', signature(object='NMFfitX1'),
function(object){
object@rng1
}
)
#' Compares the NMF models fitted by multiple runs, that only kept the best fits.
setMethod('nmf.equal', signature(x='NMFfitX1', y='NMFfitX1'),
function(x, y, ...){
nmf.equal(fit(x), fit(y), ...)
}
)
#########################################################
# END_NMFfitX1
#########################################################
#' Structure for Storing All Fits from Multiple NMF Runs
#'
#' This class is used to return the result from a multiple run of a single NMF
#' algorithm performed with function \code{nmf} with option
#' \code{keep.all=TRUE} (cf. \code{\link{nmf}}).
#'
#' It extends both classes \code{\linkS4class{NMFfitX}} and \code{list}, and
#' stores the result of each run (i.e. a \code{NMFfit} object) in its
#' \code{list} structure.
#'
#' IMPORTANT NOTE: This class is designed to be \strong{read-only}, even though
#' all the \code{list}-methods can be used on its instances. Adding or removing
#' elements would most probably lead to incorrect results in subsequent calls.
#' Capability for concatenating and merging NMF results is for the moment only
#' used internally, and should be included and supported in the next release of
#' the package.
#'
#'
#' @slot .Data standard slot that contains the S3 \code{list} object data.
#' See R documentation on S3/S4 classes for more details (e.g., \code{\link{setOldClass}}).
#'
#' @export
#' @family multipleNMF
#' @examples
#'
#' # generate a synthetic dataset with known classes
#' n <- 15; counts <- c(5, 2, 3);
#' V <- syntheticNMF(n, counts)
#'
#' # get the class factor
#' groups <- V$pData$Group
#'
#' # perform multiple runs of one algorithm, keeping all the fits
#' res <- nmf(V, 3, nrun=2, .options='k') # .options=list(keep.all=TRUE) also works
#' res
#'
#' summary(res)
#' # get more info
#' summary(res, target=V, class=groups)
#'
#' # compute/show computational times
#' runtime.all(res)
#' seqtime(res)
#'
#' # plot the consensus matrix, computed on the fly
#' \dontrun{ consensusmap(res, annCol=groups) }
#'
setClass('NMFfitXn'
, contains=c('NMFfitX', 'list')
, validity=function(object){
# the list must only contains NMFfit objects of the same dimensions
ref.dim <- NULL
ref.algo <- NULL
for(i in seq_along(object)){
# check class of the element
item <- object[[i]]
if( !(is(item, 'NMFfit') && !is(item, 'NMFfitX')) )
return(paste("invalid class for element", i, "of input list [all elements must be a NMFfit object]"))
# check dimensions
if( is.null(ref.dim) ) ref.dim <- dim(item)
if( !identical(ref.dim, dim(item)) )
return(paste("invalid dimension for element", i, "of input list [all elements must have the same dimensions]"))
# check algorithm names
if( is.null(ref.algo) ) ref.algo <- algorithm(item)
if( !identical(ref.algo, algorithm(item)) )
return(paste("invalid algorithm for element", i, "of input list [all elements must result from the same algorithm]"))
}
}
)
# Updater for slot .Data
#objectUpdater('NMFfitXn', '0.5.06'
# , vfun=function(object){ !.hasSlot(object, 'rng1') }
# , function(x, y){
# y@.Data <- lapply(x@.Data, nmfObject)
# }
#)
#' Show method for objects of class \code{NMFfitXn}
#' @export
setMethod('show', 'NMFfitXn',
function(object){
callNextMethod(object)
# if the object is not empty and slot runtime.all is not null then show
# the sequential time, as it might be different from runtime.all
if( length(object) > 0 && !is.null(runtime.all(object, null=TRUE)) ){
# show total sequential timing
cat(" Sequential timing:\n"); show(seqtime(object));
}
}
)
#' Returns the number of basis components common to all fits.
#'
#' Since all fits have been computed using the same rank, it returns the
#' factorization rank of the first fit.
#' This method returns \code{NULL} if the object is empty.
setMethod('nbasis', signature(x='NMFfitXn'),
function(x, ...){
if( length(x) == 0 ) return(NULL)
return( nbasis(x[[1]]) )
}
)
#' Returns the dimension common to all fits.
#'
#' Since all fits have the same dimensions, it returns the dimension of the
#' first fit.
#' This method returns \code{NULL} if the object is empty.
#'
#' @rdname dims
setMethod('dim', signature(x='NMFfitXn'),
function(x){
if( length(x) == 0 ) return(NULL)
return( dim(x[[1L]]) )
}
)
#' Returns the coefficient matrix of the best fit amongst all the fits stored in
#' \code{object}.
#' It is a shortcut for \code{coef(fit(object))}.
setMethod('coef', signature(object='NMFfitXn'),
function(object, ...){
coef(fit(object), ...)
}
)
#' Returns the basis matrix of the best fit amongst all the fits stored in
#' \code{object}.
#' It is a shortcut for \code{basis(fit(object))}.
setMethod('basis', signature(object='NMFfitXn'),
function(object, ...){
basis(fit(object), ...)
}
)
#' Method for multiple NMF fit objects, which returns the indexes of fixed basis
#' terms from the best fitted model.
setMethod('ibterms', 'NMFfitX',
function(object){
ibterms(fit(object))
}
)
#' Method for multiple NMF fit objects, which returns the indexes of fixed
#' coefficient terms from the best fitted model.
setMethod('icterms', 'NMFfit',
function(object){
icterms(fit(object))
}
)
#' Returns the number of runs performed to compute the fits stored in the list
#' (i.e. the length of the list itself).
setMethod('nrun', 'NMFfitXn',
function(object){
length(object)
}
)
#' Returns the name of the common NMF algorithm used to compute all fits
#' stored in \code{object}
#'
#' Since all fits are computed with the same algorithm, this method returns the
#' name of algorithm that computed the first fit.
#' It returns \code{NULL} if the object is empty.
setMethod('algorithm', 'NMFfitXn',
function(object){
if( length(object) == 0 ) return(NULL)
return( algorithm(object[[1]]) )
}
)
#' Returns the name of the common seeding method used the computation of all fits
#' stored in \code{object}
#'
#' Since all fits are seeded using the same method, this method returns the
#' name of the seeding method used for the first fit.
#' It returns \code{NULL} if the object is empty.
setMethod('seeding', 'NMFfitXn',
function(object){
if( length(object) == 0 ) return(NULL)
return( seeding(object[[1]]) )
}
)
#' Returns the common type NMF model of all fits stored in \code{object}
#'
#' Since all fits are from the same NMF model, this method returns the
#' model type of the first fit.
#' It returns \code{NULL} if the object is empty.
setMethod('modelname', signature(object='NMFfitXn'),
function(object){
if( length(object) == 0 ) return(NULL)
return( modelname(object[[1]]) )
}
)
#' Returns the CPU time that would be required to sequentially compute all NMF
#' fits stored in \code{object}.
#'
#' This method calls the function \code{runtime} on each fit and sum up the
#' results.
#' It returns \code{NULL} on an empty object.
setMethod('seqtime', 'NMFfitXn',
function(object){
if( length(object) == 0 ) return(NULL)
# sum up the time across the runs
.seqtime(object)
}
)
#' Returns the CPU time used to perform all the NMF fits stored in \code{object}.
#'
#' If no time data is available from in slot \sQuote{runtime.all} and argument
#' \code{null=TRUE}, then the sequential time as computed by
#' \code{\link{seqtime}} is returned, and a warning is thrown unless \code{warning=FALSE}.
#'
#' @param null a logical that indicates if the sequential time should be returned
#' if no time data is available in slot \sQuote{runtime.all}.
#' @param warning a logical that indicates if a warning should be thrown if the
#' sequential time is returned instead of the real CPU time.
#'
setMethod('runtime.all', 'NMFfitXn',
function(object, null=FALSE, warning=TRUE){
if( length(object) == 0 ) return(NULL)
stored.time <- slot(object, 'runtime.all')
# if there is some time stored, return it
if( length(stored.time) > 0 ) stored.time
else if( null ) NULL
else{
if( warning )
warning("NMFfitXn::runtime.all - computation time data not available [sequential time was used instead]")
seqtime(object) # otherwise total sequential time
}
}
)
#' Returns the best NMF model in the list, i.e. the run that achieved the lower
#' estimation residuals.
#'
#' The model is selected based on its \code{deviance} value.
#'
setMethod('minfit', 'NMFfitXn',
function(object){
b <- which.best(object, deviance)
# test for length 0
if( length(b) == 0 ) return(NULL)
# return the run with the lower
object[[ b ]]
}
)
#' \code{which.best} returns the index of the best fit in a list of NMF fit,
#' according to some quantitative measure.
#' The index of the fit with the lowest measure is returned.
#'
#' @param object an NMF model fitted by multiple runs.
#' @param FUN the function that computes the quantitative measure.
#' @param ... extra arguments passed to \code{FUN}.
#'
#' @export
#' @rdname advanced
which.best <- function(object, FUN=deviance, ...){
# test for length 0
if( length(object) == 0 )
return(integer())
# retrieve the measure for each run
e <- sapply(object, FUN, ...)
# return the run with the lower
which.min(e)
}
#' Returns the RNG settings used for the first run.
#'
#' This method throws an error if the object is empty.
setMethod('getRNG1', signature(object='NMFfitXn'),
function(object){
if( length(object) == 0 )
stop("NMF::getRNG1 - Could not extract RNG data from empty object [class:", class(object), "]")
getRNG(object[[1]])
}
)
#' @inline
#' @rdname RNG
#' @export
setGeneric('.getRNG', package='rngtools')
#' Returns the RNG settings used for the best fit.
#'
#' This method throws an error if the object is empty.
setMethod('.getRNG', signature(object='NMFfitXn'),
function(object, ...){
if( length(object) == 0 )
stop("NMF::getRNG - Could not extract RNG data from empty object [class:", class(object), "]")
getRNG(minfit(object), ...)
}
)
#' Returns the best NMF fit object amongst all the fits stored in \code{object},
#' i.e. the fit that achieves the lowest estimation residuals.
setMethod('fit', signature(object='NMFfitXn'),
function(object){
fit( minfit(object) )
}
)
#' Compares the results of multiple NMF runs.
#'
#' This method either compare the two best fit, or all fits separately.
#' All extra arguments in \code{...} are passed to each internal call to
#' \code{nmf.equal}.
#'
#' @param all a logical that indicates if all fits should be compared separately
#' or only the best fits
#' @param vector a logical, only used when \code{all=TRUE}, that indicates if
#' all fits must be equal for \code{x} and \code{y} to be declared equal, or
#' if one wants to return the result of each comparison in a vector.
#'
#' @inline
setMethod('nmf.equal', signature(x='list', y='list'),
function(x, y, ..., all=FALSE, vector=FALSE){
if( !all )
nmf.equal(x[[ which.best(x) ]], y[[ which.best(y) ]], ...)
else{
if( length(x) != length(y) )
FALSE
else
res <- mapply(function(a,b,...) isTRUE(nmf.equal(a,b,...)), x, y, MoreArgs=list(...))
if( !vector )
res <- all( res )
res
}
}
)
#' Compare all elements in \code{x} to \code{x[[1]]}.
setMethod('nmf.equal', signature(x='list', y='missing'),
function(x, y, ...){
if( length(x) == 0L ){
warning("Empty list argument `x`: returning NA")
return(NA)
}
if( length(x) == 1L ){
warning("Only one element in list argument `x`: returning TRUE")
return(TRUE)
}
for( a in x ){
if( !nmf.equal(x[[1]], a, ...) ) return(FALSE)
}
return(TRUE)
}
)
#' Computes the consensus matrix of the set of fits stored in \code{object}, as
#' the mean connectivity matrix across runs.
#'
#' This method returns \code{NULL} on an empty object.
#' The result is a matrix with several attributes attached, that are used by
#' plotting functions such as \code{\link{consensusmap}} to annotate the plots.
#'
#' @aliases plot.NMF.consensus
setMethod('consensus', signature(object='NMFfitXn'),
function(object, ..., no.attrib = FALSE){
if( length(object) == 0 ) return(NULL)
# init empty consensus matrix
con <- matrix(0, ncol(object), ncol(object))
# name the rows and columns appropriately: use the sample names of the first fit
dimnames(con) <- list(colnames(object[[1]]), colnames(object[[1]]))
# compute mean connectivity matrix
sapply(object
, function(x, ...){
con <<- con + connectivity(x, ..., no.attrib = TRUE)
NULL
}
, ...
)
con <- con / nrun(object)
# return result
if( !no.attrib ){
class(con) <- c(class(con), 'NMF.consensus')
attr(con, 'nrun') <- nrun(object)
attr(con, 'nbasis') <- nbasis(object)
}
con
}
)
#' @method plot NMF.consensus
#' @export
plot.NMF.consensus <- function(x, ...){
consensusmap(x, ...)
}
#' Dispersion of a Matrix
#'
#' Computes the dispersion coefficient of a -- consensus -- matrix
#' \code{object}, generally obtained from multiple NMF runs.
#'
#' The dispersion coefficient is based on the consensus matrix (i.e. the
#' average of connectivity matrices) and was proposed by \cite{KimH2007} to
#' measure the reproducibility of the clusters obtained from NMF.
#'
#' It is defined as:
#' \deqn{\rho = \sum_{i,j=1}^n 4 (C_{ij} - \frac{1}{2})^2 , }
#' where \eqn{n} is the total number of samples.
#'
#' By construction, \eqn{0 \leq \rho \leq 1} and \eqn{\rho = 1} only for a perfect
#' consensus matrix, where all entries 0 or 1.
#' A perfect consensus matrix is obtained only when all the connectivity matrices
#' are the same, meaning that the algorithm gave the same clusters at each run.
#' See \cite{KimH2007}.
#'
#' @param object an object from which the dispersion is computed
#' @param ... extra arguments to allow extension
#'
#' @export
setGeneric('dispersion', function(object, ...) standardGeneric('dispersion') )
#' Workhorse method that computes the dispersion on a given matrix.
setMethod('dispersion', 'matrix',
function(object, ...){
stopifnot( nrow(object) == ncol(object) )
sum( 4 * (object-1/2)^2 ) / nrow(object)^2
}
)
#' Computes the dispersion on the consensus matrix obtained from multiple NMF
#' runs.
setMethod('dispersion', 'NMFfitX',
function(object, ...){
dispersion(consensus(object), ...)
}
)
#' Factory Method for Multiple NMF Run Objects
#'
#' @param object an object from which is created an \code{NMFfitX} object
#' @param ... extra arguments used to pass values for slots
#'
#' @inline
#' @keywords internal
setGeneric('NMFfitX', function(object, ...) standardGeneric('NMFfitX') )
#' Create an \code{NMFfitX} object from a list of fits.
#'
#' @param .merge a logical that indicates if the fits should be aggregated, only
#' keeping the best fit, and return an \code{NMFfitX1} object.
#' If \code{FALSE}, an \code{NMFfitXn} object containing the data of all the fits
#' is returned.
#'
setMethod('NMFfitX', 'list',
function(object, ..., .merge=FALSE){
if( length(object) == 0 )
return(new('NMFfitXn'))
else if( is(object, 'NMFfitXn') && !.merge)
return(object)
# retrieve the extra arguments
extra <- list(...)
# if runtime.all is provided: be sure it's of the right class
tt <- extra$runtime.all
compute.tt <- TRUE
if( !is.null(tt) ){
if( !is(tt, 'proc_time') ){
if( !is.numeric(tt) || length(tt) != 5 )
stop("NMF::NMFfitX - invalid value for 'runtime.all' [5-length numeric expected]")
class(extra$runtime.all) <- 'proc_time'
}
compute.tt <- FALSE
}else{
extra$runtime.all <- rep(0,5)
class(extra$runtime.all) <- 'proc_time'
}
# check validity and aggregate if required
ref.algo <- NULL
ref.class <- NULL
nrun <- 0
lapply( seq_along(object)
, function(i){
item <- object[[i]]
# check the type of each element
if( !(is(item, 'NMFfitX') || is(item, 'NMFfit')) )
stop("NMF::NMFfitX - invalid class for element ", i, " of input list [all elements must be NMFfit or NMFfitX objects]")
# check that all elements result from the same algorithm
if( is.null(ref.algo) ) ref.algo <<- algorithm(item)
if( !identical(algorithm(item), ref.algo) )
stop("NMF::NMFfitX - invalid algorithm for element ", i, " of input list [cannot join results from different algorithms]")
# check if simple join is possible: only Ok if all elements are from the same class (NMFfit or NMFfitXn)
if( length(ref.class) <= 1 ) ref.class <<- unique(c(ref.class, class(item)))
# sum up the number of runs
nrun <<- nrun + nrun(item)
# compute total running time if necessary
if( compute.tt )
extra$runtime.all <<- extra$runtime.all + runtime.all(item)
}
)
# force merging if the input list is hetergeneous or if it only contains NMFfitX1 objects
if( length(ref.class) > 1 || ref.class == 'NMFfitX1' ){
nmf.debug('NMFfitX', ".merge is forced to TRUE")
.merge <- TRUE
}
# unpack all the NMFfit objects
object.list <- unlist(object)
nmf.debug('NMFfitX', "Number of fits to join = ", length(object.list))
# one wants to keep only the best result
if( .merge ){
warning("NMF::NMFfitX - The method for merging lists is still in development")
# set the total number of runs
extra$nrun <- as.integer(nrun)
# consensus matrix
if( !is.null(extra$consensus) )
warning("NMF::NMFfitX - the value of 'consensus' was discarded as slot 'consensus' is computed internally")
extra$consensus <- NULL
consensus <- matrix(as.numeric(NA), 0, 0)
best.res <- Inf
best.fit <- NULL
sapply(object.list, function(x){
if( !is(x, 'NMFfit') )
stop("NMF::NMFfitX - all inner-elements of '",substitute(object),"' must inherit from class 'NMFfit'")
# merge consensus matrices
consensus <<- if( sum(dim(consensus)) == 0 ) nrun(x) * consensus(x)
else consensus + nrun(x) * consensus(x)
temp.res <- residuals(x)
if( temp.res < best.res ){
# keep best result
best.fit <<- minfit(x)
best.res <<- temp.res
}
})
# finalize consensus matrix
consensus <- consensus/extra$nrun
extra$consensus <- consensus
# return merged result
return( do.call(NMFfitX, c(list(best.fit), extra)) )
}
else{
# create a NMFfitXn object that holds the whole list
do.call('new', c(list('NMFfitXn', object.list), extra))
}
}
)
#' Creates an \code{NMFfitX1} object from a single fit.
#' This is used in \code{\link{nmf}} when only the best fit is kept in memory or
#' on disk.
#'
setMethod('NMFfitX', 'NMFfit',
function(object, ...){
extra <- list(...)
# default value for nrun is 1
if( is.null(extra$nrun) ) extra$nrun = as.integer(1)
# a consensus matrix is required (unless nrun is 1)
if( is.null(extra$consensus) ){
if( extra$nrun == 1 )
extra$consensus <- connectivity(object)
else
stop("Slot 'consensus' is required to create a 'NMFfitX1' object where nrun > 1")
}
# slot runtime.all is inferred if missing and nrun is 1
if( is.null(extra$runtime.all) && extra$nrun == 1 )
extra$runtime.all <- runtime(object)
# create the NMFfitX1 object
do.call('new', c(list('NMFfitX1', object), extra))
}
)
#' Provides a way to aggregate \code{NMFfitXn} objects into an \code{NMFfitX1}
#' object.
setMethod('NMFfitX', 'NMFfitX',
function(object, ...){
# nothing to do in the case of NMFfitX1 objects
if( is(object, 'NMFfitX1') ) return(object)
# retrieve extra arguments
extra <- list(...)
# take runtime.all from the object itself
if( !is.null(extra$runtime.all) )
warning("NMF::NMFfitX - argument 'runtime.all' was discarded as it is computed from argument 'object'")
extra$runtime.all <- runtime.all(object)
# create the NMFfitX1 object
f <- selectMethod(NMFfitX, 'list')
do.call(f, c(list(object), extra))
}
)
#' Computes the best or mean purity across all NMF fits stored in \code{x}.
#'
#' @param method a character string that specifies how the value is computed.
#' It may be either \code{'best'} or \code{'mean'} to compute the best or mean
#' purity respectively.
#'
#' @inline
setMethod('purity', signature(x='NMFfitXn', y='ANY'),
function(x, y, method='best', ...){
c <- sapply(x, purity, y=y, ...)
# aggregate the results if a method is provided
if( is.null(method) ) c
else aggregate.measure(c, method, decreasing=TRUE)
}
)
#' Computes the best or mean entropy across all NMF fits stored in \code{x}.
#'
#' @inline
setMethod('entropy', signature(x='NMFfitXn', y='ANY'),
function(x, y, method='best', ...){
c <- sapply(x, entropy, y=y, ...)
# aggregate the results if a method is provided
if( is.null(method) ) c
else aggregate.measure(c, method)
}
)
###% Utility function to aggregate numerical quality measures from \code{NMFfitXn} objects.
###%
###% Given a numerical vector, this function computes an aggregated value using one of the following methods:
###% - mean: the mean of the measures
###% - best: the best measure according to the specified sorting order (decreasing or not)
###%
aggregate.measure <- function(measure, method=c('best', 'mean'), decreasing=FALSE){
# aggregate the results
method <- match.arg(method)
res <- switch(method
, mean = mean(measure)
, best = if( decreasing ) max(measure) else min(measure)
)
# set the name to
names(res) <- method
# return result
res
}
#' Computes a set of measures to help evaluate the quality of the \emph{best
#' fit} of the set.
#' The result is similar to the result from the \code{summary} method of
#' \code{NMFfit} objects.
#' See \code{\linkS4class{NMF}} for details on the computed measures.
#' In addition, the cophenetic correlation (\code{\link{cophcor}}) and
#' \code{\link{dispersion}} coefficients of the consensus matrix are returned,
#' as well as the total CPU time (\code{\link{runtime.all}}).
#'
setMethod('summary', signature(object='NMFfitX'),
function(object, ...){
# compute summary measures for the best fit
best.fit <- minfit(object)
s <- summary(best.fit, ...)
# get totaltime
t <- runtime.all(object)
# replace cpu.all and nrun in the result (as these are set by the summary method of class NMFfit)
s[c('cpu.all', 'nrun')] <- c(as.numeric(t['user.self']+t['user.child']), nrun(object))
# compute cophenetic correlation coeff and dispersion
C <- consensus(object)
s <- c(s, cophenetic=cophcor(C), dispersion=dispersion(C))
# compute mean consensus silhouette width
si <- silhouette(object, what = 'consensus')
s <- c(s, silhouette.consensus = if( !is_NA(si) ) summary(si)$avg.width else NA)
# return result
s
}
)
#' Comparing Results from Different NMF Runs
#'
#' The functions documented here allow to compare the fits computed in
#' different NMF runs.
#' The fits do not need to be from the same algorithm, nor have the same
#' dimension.
#'
#' The methods \code{compare} enables to compare multiple NMF fits either
#' passed as arguments or as a list of fits.
#' These methods eventually call the method \code{summary,NMFList}, so that
#' all its arguments can be passed \strong{named} in \code{...}.
#'
#' @param ... extra arguments passed by \code{compare} to \code{summary,NMFList}
#' or to the \code{summary} method of each fit.
#'
#' @name compare-NMF
#' @rdname nmf-compare
NULL
.compare_NMF <- function(...){
args <- list(...)
iargs <-
if( is.null(names(args)) ){
names(args) <- rep("", length(args))
seq(args)
}else{
iargs <- which(names(args)=='')
if( length(iargs) != length(args) )
iargs <- iargs[ iargs < which(names(args)!='')[1L] ]
iargs
}
lfit <- args[iargs]
lfit <- unlist(lfit, recursive=FALSE)
# wrap up into an NMFList object
object <- as.NMFList(lfit)
do.call('summary', c(list(object), args[-iargs]))
}
#' Compare multiple NMF fits passed as arguments.
#'
#' @rdname nmf-compare
#'
#' @examples
#'
#' x <- rmatrix(20,10)
#' res <- nmf(x, 3)
#' res2 <- nmf(x, 2, 'lee')
#'
#' # compare arguments
#' compare(res, res2, target=x)
#'
setMethod('compare', signature(object='NMFfit'),
function(object, ...){
.compare_NMF(object, ...)
}
)
#' Compares the fits obtained by separate runs of NMF, in a single
#' call to \code{\link{nmf}}.
#'
#' @rdname nmf-compare
#'
#' # compare each fits in a multiple runs
#' res3 <- nmf(x, 2, nrun=3, .opt='k')
#' compare(res3)
#' compare(res3, res, res2)
#' compare(list(res3), res, res2, target=x)
#'
setMethod('compare', signature(object='NMFfitXn'),
function(object, ...){
do.call(.compare_NMF, c(unlist(object), list(...)))
}
)
#' Compares multiple NMF fits passed as a standard list.
#'
#' @rdname nmf-compare
#'
#' @examples
#' # compare elements of a list
#' compare(list(res, res2), target=x)
setMethod('compare', signature(object='list'),
function(object, ...){
do.call(.compare_NMF, c(list(object), list(...)))
}
)
#' @details
#' \code{summary,NMFList} computes summary measures for each NMF result in the list
#' and return them in rows in a \code{data.frame}.
#' By default all the measures are included in the result, and \code{NA} values
#' are used where no data is available or the measure does not apply to the
#' result object (e.g. the dispersion for single' NMF runs is not meaningful).
#' This method is very useful to compare and evaluate the performance of
#' different algorithms.
#'
#' @param select the columns to be output in the result \code{data.frame}. The
#' column are given by their names (partially matched). The column names are
#' the names of the summary measures returned by the \code{summary} methods of
#' the corresponding NMF results.
#' @param sort.by the sorting criteria, i.e. a partial match of a column name,
#' by which the result \code{data.frame} is sorted. The sorting direction
#' (increasing or decreasing) is computed internally depending on the chosen
#' criteria (e.g. decreasing for the cophenetic coefficient, increasing for the
#' residuals).
#'
#' @rdname nmf-compare
setMethod('summary', signature(object='NMFList'),
function(object, sort.by=NULL, select=NULL, ...){
if( length(object) == 0L ) return()
# define the sorting schema for each criteria (TRUE for decreasing, FALSE for increasing)
sorting.schema <- list(method=FALSE, seed=FALSE, rng=FALSE, metric=FALSE
, residuals=FALSE, cpu=FALSE, purity=TRUE, nrun=FALSE, cpu.all=FALSE
, cophenetic=TRUE, dispersion=TRUE #NMFfitX only
, entropy=FALSE, sparseness.basis=TRUE, sparseness.coef=TRUE, rank=FALSE, rss=FALSE
, niter=FALSE, evar=TRUE
, silhouette.coef = TRUE, silhouette.basis = TRUE
, silhouette.consensus = TRUE)
# for each result compute the summary measures
measure.matrix <- sapply(object, summary, ...)
# the results from 'summary' might not have the same length => generate NA where necessary
if( is.list(measure.matrix) ){
name.all <- unique(unlist(sapply(measure.matrix, names)))
measure.matrix <- sapply(seq_along(measure.matrix),
function(i){
m <- measure.matrix[[i]][name.all]
names(m) <- name.all
m
}
)
}
# transpose the results so that methods are in lines, measures are in columns
measure.matrix <- t(measure.matrix)
# set up the resulting data.frame
methods <- sapply(object, function(x, ...){
x <- minfit(x)
m <- algorithm(x)
s <- seeding(x)
svalue <- objective(x)
svalue <- if( is.function(svalue) ) '<function>' else svalue
c(method=m, seed=s, rng=RNGdigest(x), metric=svalue)
}
)
methods <- t(methods)
res <- as.data.frame(methods, stringsAsFactors=FALSE)
# add the measures to the result
res <- cbind(res, measure.matrix)
res$rng <- as.numeric(factor(res$rng))
# sort according to the user's preference
# ASSERT FOR DEV: all columns measure must have a defined sorting schema
#if( !all( no.schema <- is.element(colnames(res), names(sorting.schema))) )
# warning("ASSERT: missing sorting schema for criteria(e): ", paste(paste("'", colnames(res)[!no.schema], "'", sep=''), collapse=', '))
if( !is.null(sort.by) ){
sorting.criteria <- intersect(colnames(res), names(sorting.schema))
sort.by.ind <- pmatch(sort.by, sorting.criteria)
if( is.na(sort.by.ind) )
stop("NMF::summary[NMFList] : argument 'sort.by' must be NULL or partially match one of "
, paste( paste("'", names(sorting.schema), "'", sep=''), collapse=', ')
, call.=FALSE)
sort.by <- sorting.criteria[sort.by.ind]
res <- res[order(res[[sort.by]], decreasing=sorting.schema[[sort.by]]) , ]
# add an attribute to the result to show the sorting criteria that was used
attr(res, 'sort.by') <- sort.by
}
# limit the output to the required measures
if( !is.null(select) || !missing(select) ){
select.full <- match.arg(select, colnames(res), several.ok=TRUE)
if( length(select.full) < length(select) )
stop("NMF::summary[NMFList] - the elements of argument 'select' must partially match one of "
, paste(paste("'", colnames(res),"'", sep=''), collapse=', ')
, call.=FALSE)
res <- subset(res, select=select.full)
}
# return result
res
}
)
#' @details
#' \code{plot} plot on a single graph the residuals tracks for each fit in \code{x}.
#' See function \code{\link{nmf}} for details on how to enable the tracking of residuals.
#'
#' @param x an \code{NMFList} object that contains fits from separate NMF runs.
#' @param y missing
#' @inheritParams plot,NMFfit,missing-method
#'
#' @rdname nmf-compare
setMethod('plot', signature(x='NMFList', y='missing'),
function(x, y, skip=-1L, ...){
# retrieve normalized residuals tracks
max.iter <- 0
tracks <- lapply( x,
function(res){
res <- minfit(res)
t <- residuals(res, track=TRUE)
# skip some residuals(s) if requested
if( skip == -1L && !is.null(names(t)) ) t <- t[names(t)!='0'] # remove initial residual
else if( skip > 0 ) t <- t[-(1:skip)]
#print(t)
# update max iteration
max.iter <<- max(max.iter, as.numeric(names(t)))
# return normalized track
t/t[1]
}
)
minT <- min(sapply(tracks, min))
maxT <- max(sapply(tracks, max))
#print(tracks)
# create an empty plot
# set default graphical parameters (those can be overriden by the user)
params <- .set.list.defaults(list(...)
, xlab='Iterations', ylab='Normalised objective values'
, main='NMF Residuals')
# setup the plot
do.call('plot',
c(list(0, xlim=c(0,max.iter+100), ylim=c(minT, maxT)), col='#00000000'
, params)
)
# add legend
cols <- seq_along(tracks)
legend('topright', legend=names(tracks), fill=cols
, title='Algorithm')
# plot each tracks
lapply( seq_along(tracks),
function(i){
t <- tracks[[i]]
points(names(t), t, col=cols[i], type='p', cex=0.5)
points(names(t), t, col=cols[i], type='l', lwd=1.4)
})
# return invisible
return(invisible())
}
)
#' Deprecated method subsituted by \code{\link{consensusmap}}.
setMethod('metaHeatmap', signature(object='NMFfitX'),
function(object, ...){
# send deprecated warning
.Deprecated('metaHeatmap', 'NMF', "Direct use of the S4-Method 'metaHeatmap' for 'NMFfitX' objects is deprecated, use 'consensusmap' instead.")
# call the new function 'consmap'
return( consensusmap(object, ...) )
}
)
#' \code{consensusmap} plots heatmaps of consensus matrices.
#'
#' @details
#' \code{consensusmap} redefines default values for the following arguments of
#' \code{\link{aheatmap}}:
#' \itemize{
#' \item the colour palette;
#' \item the column ordering which is set equal to the row ordering, since
#' a consensus matrix is symmetric;
#' \item the distance and linkage methods used to order the rows (and columns).
#' The default is to use 1 minus the consensus matrix itself as distance, and
#' average linkage.
#' \item the addition of two special named annotation tracks, \code{'basis:'} and
#' \code{'consensus:'}, that show, for each column (i.e. each sample),
#' the dominant basis component in the best fit and the hierarchical clustering
#' of the consensus matrix respectively (using 1-consensus as distance and average
#' linkage).
#'
#' These tracks are specified in argument \code{tracks}, which behaves as in
#' \code{\link{basismap}}.
#'
#' \item a suitable title and extra information like the type of NMF model or the
#' fitting algorithm, when \code{object} is a fitted NMF model.
#' }
#'
#' @rdname heatmaps
#'
#' @examples
#'
#' \dontrun{
#' res <- nmf(x, 3, nrun=3)
#' consensusmap(res)
#' }
#'
#' @inline
#' @export
setGeneric('consensusmap', function(object, ...) standardGeneric('consensusmap') )
#' Plots a heatmap of the consensus matrix obtained when fitting an NMF model with multiple runs.
setMethod('consensusmap', 'NMFfitX',
function(object, annRow=NA, annCol=NA
, tracks=c('basis:', 'consensus:', 'silhouette:')
, main = 'Consensus matrix', info = FALSE
, ...){
# add side information if requested
info <- if( isTRUE(info) ){
paste("NMF model: '", modelname(object)
, "'\nAlgorithm: '", algorithm(object)
, "'\nbasis: ", nbasis(object)
,"\nnrun: ", nrun(object), sep='')
}else if( isFALSE(info) ) NULL
else info
x <- consensus(object)
# process annotation tracks
ptracks <- process_tracks(x, tracks, annRow, annCol)
annRow <- ptracks$row
annCol <- ptracks$col
# set special annotation handler
ahandlers <- list(
basis = function() predict(object)
, consensus = function() predict(object, what='consensus')
, silhouette = function(){
si <- silhouette(object, what='consensus', order = NA)
if( is_NA(si) ) NA
else si[, 'sil_width']
}
)
specialAnnotation(1L, ahandlers)
specialAnnotation(2L, ahandlers)
#
consensusmap(x, ..., annRow=annRow, annCol=annCol, main = main, info = info)
}
)
#' Plots a heatmap of the connectivity matrix of an NMF model.
setMethod('consensusmap', 'NMF',
function(object, ...){
consensusmap(connectivity(object), ...)
}
)
#' Main method that redefines default values for arguments of \code{\link{aheatmap}}.
setMethod('consensusmap', 'matrix',
function(object, color='-RdYlBu'
, distfun = function(x) as.dist(1-x), hclustfun = 'average'
, Rowv = TRUE, Colv = "Rowv"
, main = if( is.null(nr) || nr > 1 ) 'Consensus matrix' else 'Connectiviy matrix'
, info = FALSE
, ...){
nr <- nrun(object)
nb <- nbasis(object)
info <- if( isTRUE(info) ){
info <- NULL
if( !is.null(nr) ) info <- c(info, paste("nrun:", nr))
if( !is.null(nb) ) info <- c(info, paste("nbasis:", nb))
info <- c(info, paste("cophcor:", round(cophcor(object), 3)))
}else if( isFALSE(info) ) NULL
else info
aheatmap(object, color = color, ...
, distfun = distfun, hclustfun = hclustfun
, Rowv = Rowv, Colv = Colv
, main = main
, info = info)
}
)
setOldClass('NMF.rank')
#' Draw a single plot with a heatmap of the consensus matrix obtained for each value of the rank,
#' in the range tested with \code{\link{nmfEstimateRank}}.
#'
#' @rdname nmf-compare
setMethod('consensusmap', 'NMF.rank',
function(object, ...){
# plot the list of consensus matrix (set names to be used as default main titles)
consensusmap(setNames(object$fit, paste("rank = ", lapply(object$fit, nbasis))), ...)
}
)
#' Draw a single plot with a heatmap of the consensus matrix of each element in the list \code{object}.
#'
#' @param layout specification of the layout.
#' It may be a single numeric or a numeric couple, to indicate a square or rectangular layout
#' respectively, that is filled row by row.
#' It may also be a matrix that is directly passed to the function \code{\link[graphics]{layout}}
#' from the package \code{graphics}.
#'
#' @rdname nmf-compare
setMethod('consensusmap', 'list',
function(object, layout
, Rowv = FALSE, main = names(object)
, ...){
opar <- par(no.readonly=TRUE)
on.exit(par(opar))
# define default layout
if (missing(layout) ){
n <- length(object)
nr <- nc <- floor(sqrt(n))
if( nr^2 != n ){
nc <- nr + 1
if( nr == 1 && nr*nc < n )
nr <- nr + 1
}
layout <- c(nr, nc)
}
if( !is.matrix(layout) ){
if( !is.numeric(layout) )
stop("invalid layout specification: must be a matrix or a numeric")
if( length(layout) == 1 )
layout <- c(layout, layout)
layout <- matrix(1:(layout[1]*layout[2]), layout[1], byrow=TRUE)
}
graphics::layout(layout)
res <- sapply(seq_along(object), function(i, ...){
x <- object[[i]]
# set main title
main <- if( !is.null(main) && length(main) > 1 ){
if( length(main) != length(object) )
stop("consensusmap - Invalid length for argument `main`: should be either a single character string, or a list or vector of same length as ", deparse(substitute(object)))
main[[i]]
}
# call method for the fit
consensusmap(x, ..., Rowv=Rowv, main=main)
}, ...)
invisible(res)
}
)
#' Plots a heatmap of the basis matrix of the best fit in \code{object}.
setMethod('basismap', signature(object='NMFfitX'),
function(object, ...){
# call the method on the best fit
basismap(minfit(object), ...)
}
)
#' Plots a heatmap of the coefficient matrix of the best fit in \code{object}.
#'
#' This method adds:
#' \itemize{
#' \item an extra special column annotation track for multi-run NMF fits,
#' \code{'consensus:'}, that shows the consensus cluster associated to each sample.
#' \item a column sorting schema \code{'consensus'} that can be passed
#' to argument \code{Colv} and orders the columns using the hierarchical clustering of the
#' consensus matrix with average linkage, as returned by \code{\link{consensushc}(object)}.
#' This is also the ordering that is used by default for the heatmap of the consensus matrix
#' as ploted by \code{\link{consensusmap}}.
#' }
setMethod('coefmap', signature(object='NMFfitX'),
function(object
, Colv=TRUE
, annRow=NA, annCol=NA
, tracks=c('basis', 'consensus:')
, ...){
x <- minfit(object)
# process annotation tracks
ptracks <- process_tracks(x, tracks, annRow, annCol)
annRow <- ptracks$row
annCol <- ptracks$col
# set special annotation handler
specialAnnotation(2L, 'consensus', function() predict(object, what='consensus'))
# row track handler is added in coefmap,NMF
#
## process ordering
if( isString(Colv) ){
if( Colv %in% c('consensus', 'cmap') )
Colv <- consensushc(object, 'consensus')
}
##
# call the method on the best fit
coefmap(x, ..., Colv=Colv, annRow=annRow, annCol=annCol, tracks=NA)
}
)
#' Cophenetic Correlation Coefficient
#'
#' The function \code{cophcor} computes the cophenetic correlation coefficient
#' from consensus matrix \code{object}, e.g. as obtained from multiple NMF runs.
#'
#' The cophenetic correlation coeffificient is based on the consensus matrix
#' (i.e. the average of connectivity matrices) and was proposed by
#' \cite{Brunet2004} to measure the stability of the clusters obtained from NMF.
#'
#' It is defined as the Pearson correlation between the samples' distances
#' induced by the consensus matrix (seen as a similarity matrix) and their
#' cophenetic distances from a hierachical clustering based on these very
#' distances (by default an average linkage is used).
#' See \cite{Brunet2004}.
#'
#' @param object an object from which is extracted a consensus matrix.
#' @param ... extra arguments to allow extension and passed to subsequent calls.
#'
#' @inline
#' @seealso \code{\link{cophenetic}}
#' @export
setGeneric('cophcor', function(object, ...) standardGeneric('cophcor') )
#' Workhorse method for matrices.
#'
#' @param linkage linkage method used in the hierarchical clustering.
#' It is passed to \code{\link{hclust}}.
#'
setMethod('cophcor', signature(object='matrix'),
function(object, linkage='average'){
# check for empty matrix
if( nrow(object)==0 || ncol(object)==0 )
{
warning("NMF::cophcor - NA produced [input matrix is of dimension ", nrow(object), "x", ncol(object), "]"
, call.=FALSE)
return(NA)
}
# safe-guard for diagonal matrix: to prevent error in 'cor'
if( all(object[upper.tri(object)]==0) && all(diag(object)==object[1,1]) )
return(1)
# convert consensus matrix into dissimilarities
d.consensus <- as.dist(1 - object)
# compute cophenetic distance based on these dissimilarities
hc <- hclust(d.consensus, method=linkage)
d.coph <- cophenetic(hc)
# return correlation between the two distances
res <- cor(d.consensus, d.coph, method='pearson')
return(res)
}
)
#' Computes the cophenetic correlation coefficient on the consensus matrix
#' of \code{object}.
#' All arguments in \code{...} are passed to the method \code{cophcor,matrix}.
setMethod('cophcor', signature(object='NMFfitX'),
function(object, ...){
# compute the consensus matrix
C <- consensus(object)
return( cophcor(C, ...))
}
)
# TODO: uncomment this and make it compute the mean or best rss
#setMethod('rss', 'NMFfitXn',
# function(object, target, ...){
# rss(fit(object, ...), target)
# }
#)
|