File: algorithms-base.R

package info (click to toggle)
r-cran-nmf 0.23.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 3,344 kB
  • sloc: cpp: 680; ansic: 7; makefile: 2
file content (514 lines) | stat: -rw-r--r-- 17,651 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# Standard NMF algorithms
# 
# Author: Renaud Gaujoux
# Creation: 30 Apr 2012
###############################################################################

#' @include NMFstd-class.R
#' @include NMFOffset-class.R
#' @include NMFns-class.R
#' @include registry-algorithms.R
NULL


################################################################################
# BRUNET (standard KL-based NMF)
################################################################################

#' NMF Algorithm/Updates for Kullback-Leibler Divergence
#' 
#' The built-in NMF algorithms described here minimise 
#' the Kullback-Leibler divergence (KL) between an NMF model and a target matrix. 
#' They use the updates for the basis and coefficient matrices (\eqn{W} and \eqn{H}) 
#' defined by \cite{Brunet2004}, which are essentially those from \cite{Lee2001}, 
#' with an stabilisation step that shift up all entries from zero every 10 iterations, 
#' to a very small positive value.
#' 
#' @param i current iteration number.
#' @param v target matrix.
#' @param x current NMF model, as an \code{\linkS4class{NMF}} object.
#' @param eps small numeric value used to ensure numeric stability, by shifting up
#' entries from zero to this fixed value.
#' @param ... extra arguments. These are generally not used and present
#' only to allow other arguments from the main call to be passed to the 
#' initialisation and stopping criterion functions (slots \code{onInit} and 
#' \code{Stop} respectively). 
#' @inheritParams nmf_update.KL.h
#' 
#' @author 
#' Original implementation in MATLAB: Jean-Philippe Brunet \email{brunet@@broad.mit.edu}
#' 
#' Port to R and optimisation in C++: Renaud Gaujoux
#' 
#' @source
#' 
#' Original MATLAB files and references can be found at:
#' 
#' \url{http://www.broadinstitute.org/mpr/publications/projects/NMF/nmf.m}
#' 
#' \url{http://www.broadinstitute.org/publications/broad872}
#' 
#' Original license terms:
#'  
#' This software and its documentation are copyright 2004 by the
#' Broad Institute/Massachusetts Institute of Technology. All rights are reserved.
#' This software is supplied without any warranty or guaranteed support whatsoever. 
#' Neither the Broad Institute nor MIT can not be responsible for its use, misuse, 
#' or functionality. 
#' 
#' @details
#' \code{nmf_update.brunet_R} implements in pure R a single update step, i.e. it updates 
#' both matrices.
#' 
#' @export
#' @rdname KL-nmf
#' @aliases KL-nmf
nmf_update.brunet_R <- function(i, v, x, eps=.Machine$double.eps, ...)
{
	# retrieve each factor
	w <- .basis(x); h <- .coef(x);
	
	# standard divergence-reducing NMF update for H
	h <- R_std.divergence.update.h(v, w, h)
	
	# standard divergence-reducing NMF update for W
	w <- R_std.divergence.update.w(v, w, h)
	
	#every 10 iterations: adjust small values to avoid underflow 
	if( i %% 10 == 0 ){
		#precision threshold for numerical stability
		#eps <- .Machine$double.eps
		h[h<eps] <- eps;
		w[w<eps] <- eps;
	}
	
	#return the modified model
	.basis(x) <- w; .coef(x) <- h;	
	return(x)
	
}

#' \code{nmf_update.brunet} implements in C++ an optimised version of the single update step.
#'  
#' @export
#' @rdname KL-nmf
nmf_update.brunet <- function(i, v, x, copy=FALSE, eps=.Machine$double.eps, ...)
{
	# retrieve each factor
	w <- .basis(x); h <- .coef(x);
	# fixed terms
	nb <- nbterms(x); nc <- ncterms(x)
	
	# standard divergence-reducing NMF update for H	
	h <- std.divergence.update.h(v, w, h, nbterms=nb, ncterms=nc, copy=copy)
	
	# standard divergence-reducing NMF update for W
	w <- std.divergence.update.w(v, w, h, nbterms=nb, ncterms=nc, copy=copy)
	
	#every 10 iterations: adjust small values to avoid underflow
	# NB: one adjusts in place even when copy=TRUE, as 'h' and 'w' are local variables
	if( i %% 10 == 0 ){
		#eps <- .Machine$double.eps
		h <- pmax.inplace(h, eps, icterms(x))
		w <- pmax.inplace(w, eps, ibterms(x))
	}
	
	# update object if the updates duplicated the model
	if( copy ){		
		#return the modified model	
		.basis(x) <- w; 
		.coef(x) <- h;
	}
	return(x)
	
}

#' Algorithms \sQuote{brunet} and \sQuote{.R#brunet} provide the complete NMF algorithm from \cite{Brunet2004}, 
#' using the C++-optimised and pure R updates \code{\link{nmf_update.brunet}} and \code{\link{nmf_update.brunet_R}} 
#' respectively.
#' 
#' @inheritParams run,NMFStrategyIterative,matrix,NMFfit-method
#' @inheritParams nmf.stop.connectivity
#' 
#' @rdname KL-nmf
#' @aliases brunet_R-nmf
nmfAlgorithm.brunet_R <- setNMFMethod('.R#brunet'
		, objective='KL' 
		, Update=nmf_update.brunet_R
		, Stop='connectivity')

# Optimised version
#' @rdname KL-nmf
#' @aliases brunet-nmf
nmfAlgorithm.brunet <- setNMFMethod('brunet', '.R#brunet', Update=nmf_update.brunet)

#' Algorithm \sQuote{KL} provides an NMF algorithm based on the C++-optimised version of 
#' the updates from \cite{Brunet2004}, which uses the stationarity of the objective value 
#' as a stopping criterion \code{\link{nmf.stop.stationary}}, instead of the  
#' stationarity of the connectivity matrix \code{\link{nmf.stop.connectivity}} as used by 
#' \sQuote{brunet}.
#' 
#' @inheritParams nmf.stop.stationary
#' 
#' @rdname KL-nmf
nmfAlgorithm.KL <- setNMFMethod('KL'
		, objective='KL' 
		, Update=nmf_update.brunet
		, Stop='stationary')

################################################################################
# LEE (standard Euclidean-based NMF)
################################################################################

#' NMF Algorithm/Updates for Frobenius Norm
#' 
#' The built-in NMF algorithms described here minimise 
#' the Frobenius norm (Euclidean distance) between an NMF model and a target matrix. 
#' They use the updates for the basis and coefficient matrices (\eqn{W} and \eqn{H}) 
#' defined by \cite{Lee2001}.
#' 
#' @inheritParams nmf_update.brunet
#' @inheritParams nmf_update.euclidean.h
#' @param rescale logical that indicates if the basis matrix \eqn{W} should be 
#' rescaled so that its columns sum up to one. 
#' 
#' @author 
#' Original update definition: D D Lee and HS Seung
#' 
#' Port to R and optimisation in C++: Renaud Gaujoux
#' 
#' @details
#' \code{nmf_update.lee_R} implements in pure R a single update step, i.e. it updates 
#' both matrices.
#' 
#' @export
#' @rdname Frobenius-nmf
#' @aliases Frobenius-nmf
nmf_update.lee_R <- function(i, v, x, rescale=TRUE, eps=10^-9, ...)
{
	# retrieve each factor
	w <- .basis(x); h <- .coef(x);	
	
	#precision threshold for numerical stability
	#eps <- 10^-9
	
	# compute the estimate WH
	#wh <- estimate(x)
	
	# euclidean-reducing NMF iterations	
	# H_au = H_au (W^T V)_au / (W^T W H)_au
	#h <- pmax(h * (t(w) %*% v),eps) / ((t(w) %*% w) %*% h + eps);
	h <- R_std.euclidean.update.h(v, w, h, eps=eps)
	
	# update H and recompute the estimate WH
	#metaprofiles(x) <- h
	#wh <- estimate(x)
	
	# W_ia = W_ia (V H^T)_ia / (W H H^T)_ia and columns are rescaled after each iteration	
	#w <- pmax(w * (v %*% t(h)), eps) / (w %*% (h %*% t(h)) + eps);
	w <- R_std.euclidean.update.w(v, w, h, eps=eps)
	#rescale columns TODO: effect of rescaling? the rescaling makes the update with offset fail
	if( rescale ) w <- sweep(w, 2L, colSums(w), "/", check.margin=FALSE)
	
	#return the modified model
	.basis(x) <- w; .coef(x) <- h;	
	return(x)
}

#' \code{nmf_update.lee} implements in C++ an optimised version of the single update step.
#'  
#' @export
#' @rdname Frobenius-nmf	
nmf_update.lee <- function(i, v, x, rescale=TRUE, copy=FALSE, eps=10^-9, weight=NULL, ...)
{
	# retrieve each factor
	w <- .basis(x); h <- .coef(x);
	# fixed terms
	nb <- nbterms(x); nc <- ncterms(x)
	
	#precision threshold for numerical stability
	#eps <- 10^-9
	
	# compute the estimate WH
	#wh <- estimate(x)
	
	# euclidean-reducing NMF iterations	
	# H_au = H_au (W^T V)_au / (W^T W H)_au
	h <- std.euclidean.update.h(v, w, h, eps=eps, nbterms=nb, ncterms=nc, copy=copy)
	# update original object if not modified in place
	if( copy ) .coef(x) <- h
	
	# W_ia = W_ia (V H^T)_ia / (W H H^T)_ia and columns are rescaled after each iteration	
	w <- std.euclidean.update.w(v, w, h, eps=eps, weight=weight, nbterms=nb, ncterms=nc, copy=copy)
	#rescale columns TODO: effect of rescaling? the rescaling makes the update with offset fail
	if( rescale ){
		w <- sweep(w, 2L, colSums(w), "/", check.margin=FALSE)
    }
	
	#return the modified model
	.basis(x) <- w; 	
	return(x)
}

#' Algorithms \sQuote{lee} and \sQuote{.R#lee} provide the complete NMF algorithm from \cite{Lee2001}, 
#' using the C++-optimised and pure R updates \code{\link{nmf_update.lee}} and \code{\link{nmf_update.lee_R}}
#' respectively.
#' 
#' @inheritParams run,NMFStrategyIterative,matrix,NMFfit-method
#' @inheritParams nmf.stop.connectivity
#' 
#' @rdname Frobenius-nmf
#' @aliases lee_R-nmf
nmfAlgorithm.lee_R <- setNMFMethod('.R#lee', objective='euclidean'
		, Update=nmf_update.lee_R
		, Stop='connectivity')	

# Optimised version
#' @rdname Frobenius-nmf
#' @aliases lee-nmf
nmfAlgorithm.lee <- setNMFMethod('lee', '.R#lee', Update=nmf_update.lee)

#' Algorithm \sQuote{Frobenius} provides an NMF algorithm based on the C++-optimised version of 
#' the updates from \cite{Lee2001}, which uses the stationarity of the objective value 
#' as a stopping criterion \code{\link{nmf.stop.stationary}}, instead of the  
#' stationarity of the connectivity matrix \code{\link{nmf.stop.connectivity}} as used by 
#' \sQuote{lee}.
#' 
#' @inheritParams nmf.stop.stationary
#' 
#' @rdname Frobenius-nmf
nmfAlgorithm.Frobenius <- setNMFMethod('Frobenius', objective='euclidean'
		, Update=nmf_update.lee
		, Stop='stationary')

################################################################################
# OFFSET (Euclidean-based NMF with offset) [Badea (2008)]
################################################################################


#' NMF Multiplicative Update for NMF with Offset Models
#' 
#' These update rules proposed by \cite{Badea2008} are modified version of 
#' the updates from \cite{Lee2001}, that include an offset/intercept vector, 
#' which models a common baseline for each feature accross all samples: 
#' \deqn{V \approx W H + I}
#' 
#' \code{nmf_update.euclidean_offset.h} and \code{nmf_update.euclidean_offset.w} 
#' compute the updated NMFOffset model, using the optimized \emph{C++} implementations.
#' 
#' @details 
#' The associated model is defined as an \code{\linkS4class{NMFOffset}} object. 
#' The details of the multiplicative updates can be found in \cite{Badea2008}.
#' Note that the updates are the ones defined for a single datasets, not the 
#' simultaneous NMF model, which is fit by algorithm \sQuote{siNMF} from 
#' formula-based NMF models.
#' 
#' @inheritParams nmf_update.brunet
#' @inheritParams nmf_update.euclidean.h
#' 
#' @param offset current value of the offset/intercept vector.
#' It must be of length equal to the number of rows in the target matrix.
#' 
#' @author 
#' Original update definition: Liviu Badea
#' 
#' Port to R and optimisation in C++: Renaud Gaujoux
#' 
#' @return an \code{\linkS4class{NMFOffset}} model object.
#' 
#' @export
#' @rdname offset-nmf
nmf_update.euclidean_offset.h <- function(v, w, h, offset, eps=10^-9, copy=TRUE){
	.Call("offset_euclidean_update_H", v, w, h, offset, eps, copy, PACKAGE='NMF')
}
#' @export 
#' @rdname offset-nmf
nmf_update.euclidean_offset.w <- function(v, w, h, offset, eps=10^-9, copy=TRUE){
	.Call("offset_euclidean_update_W", v, w, h, offset, eps, copy, PACKAGE='NMF')
}
#' \code{nmf_update.offset_R} implements a complete single update step, 
#' using plain R updates.
#' @export 
#' @rdname offset-nmf
nmf_update.offset_R <- function(i, v, x, eps=10^-9, ...)
{	
	# retrieve each factor
	w <- .basis(x); h <- .coef(x);
	# retrieve offset and fill it if necessary (with mean of rows)
	off <- offset(x)
	if( i == 1 && length(off) == 0 )
		off <- rowMeans(v)
	
	#precision threshold for numerical stability
	#eps <- 10^-9
	
	# compute standard lee update (it will take the offset into account) without rescaling W's columns
	
	h <- R_std.euclidean.update.h(v, w, h, wh=w%*%h + off, eps=eps)
	w <- R_std.euclidean.update.w(v, w, h, wh=w%*%h + off, eps=eps)
	#x <- nmf_update.lee(i, v, x, rescale=FALSE, ...)
	
	# update the offset	
	# V0_i = V0_i ( sum_j V_ij ) / ( sum_j (V.off + W H)_ij )
	x@offset <- off * pmax(rowSums(v), eps) / (rowSums(w%*%h + off) + eps)
	
	#return the modified model
	.basis(x) <- w; .coef(x) <- h;
	return(x)
}
#' \code{nmf_update.offset} implements a complete single update step, 
#' using C++-optimised updates.
#' @export 
#' @rdname offset-nmf
nmf_update.offset <- function(i, v, x, copy=FALSE, eps=10^-9, ...)
{	
	# retrieve each factor
	w <- .basis(x); h <- .coef(x);
	# retrieve offset and fill it if necessary (with mean of rows)
	off <- offset(x)
	if( i == 1 && length(off) == 0 )
		off <- rowMeans(v)
	
	#precision threshold for numerical stability
	#eps <- 10^-9
	
	# compute standard offset updates
	h <- nmf_update.euclidean_offset.h(v, w, h, off, eps=eps, copy=copy)
	w <- nmf_update.euclidean_offset.w(v, w, h, off, eps=eps, copy=copy)
	
	# update the offset	
	# V0_i = V0_i ( sum_j V_ij ) / ( sum_j (V.off + W H)_ij )
	x@offset <- off * pmax(rowSums(v), eps) / (rowSums(w%*%h + off) + eps)	
	
	# update the original object if not modified in place
	if( copy ){ 
		.basis(x) <- w; 
		.coef(x) <- h;
	}
	return(x)
}

#' Algorithms \sQuote{offset} and \sQuote{.R#offset} provide the complete NMF-with-offset algorithm 
#' from \cite{Badea2008}, using the C++-optimised and pure R updates \code{\link{nmf_update.offset}} 
#' and \code{\link{nmf_update.offset_R}} respectively.
#' 
#' @inheritParams run,NMFStrategyIterative,matrix,NMFfit-method
#' @inheritParams nmf.stop.connectivity
#' 
#' @rdname offset-nmf
#' @aliases offset_R-nmf
nmfAlgorithm.offset_R <- setNMFMethod('.R#offset', objective='euclidean'
		, model = 'NMFOffset'
		, Update=nmf_update.offset_R
		, Stop='connectivity')

# NMF with offset (optimised version)
#' @rdname offset-nmf
nmfAlgorithm.offset <- setNMFMethod('offset', '.R#offset', Update=nmf_update.offset)

################################################################################
# Non-smooth NMF (KL-based NMF) [Pascual-Montano (2006)]
################################################################################

#' NMF Multiplicative Update for Nonsmooth Nonnegative Matrix Factorization (nsNMF).
#' 
#' These update rules, defined for the \code{\linkS4class{NMFns}} model \eqn{V \approx W S H} from 
#' \cite{Pascual-Montano2006}, that introduces an intermediate smoothing matrix to enhance
#' sparsity of the factors.  
#' 
#' \code{nmf_update.ns} computes the updated nsNMF model.
#' It uses the optimized \emph{C++} implementations \code{\link{nmf_update.KL.w}} and 
#' \code{\link{nmf_update.KL.h}} to update \eqn{W} and \eqn{H} respectively.
#' 
#' @details
#' The multiplicative updates are based on the updates proposed by \cite{Brunet2004}, 
#' except that the NMF estimate \eqn{W H} is replaced by \eqn{W S H} and \eqn{W} 
#' (resp. \eqn{H}) is replaced by \eqn{W S} (resp. \eqn{S H}) in the update of 
#' \eqn{H} (resp. \eqn{W}).
#' 
#' See \code{\link{nmf_update.KL}} for more details on the update formula.
#' 
#' @inheritParams nmf_update.brunet
#' 
#' @return an \code{\linkS4class{NMFns}} model object.
#' 
#' @export
#' @rdname nsNMF-nmf
nmf_update.ns <- function(i, v, x, copy=FALSE, ...)
{
	# retrieve and alter the factors for updating H
	S <- smoothing(x)
	w <- .basis(x)
	h <- .coef(x);
	
	# standard divergence-reducing update for H with modified W
	h <- std.divergence.update.h(v, w %*% S, h, copy=copy)
	
	# update H if not modified in place
	if( copy ) .coef(x) <- h
	
	# standard divergence-reducing update for W with modified H
	w <- std.divergence.update.w(v, w, S %*% h, copy=copy)
	
	# rescale columns of W
	w <- sweep(w, 2L, colSums(w), '/', check.margin=FALSE)
	
	#return the modified model
	.basis(x) <- w;
	return(x)
}
#' \code{nmf_update.ns_R} implements the same updates in \emph{plain R}.
#' 
#' @export
#' @rdname nsNMF-nmf
nmf_update.ns_R <- function(i, v, x, ...)
{
	# retrieve and alter the factors for updating H
	S <- smoothing(x)
	w <- .basis(x)
	#w <- metagenes(x) %*% smoothing(fit(x)); # W <- WS
	h <- .coef(x);
	
	# compute the estimate WH
	#wh <- estimate(x, W=w.init, H=h, S=S)
	
	# standard divergence-reducing update for H with modified W
	h <- R_std.divergence.update.h(v, w %*% S, h)
	
	# update H and recompute the estimate WH
	.coef(x) <- h
	# retrieve and alter the factors for updating W
	#w <- tmp;
	#h <- smoothing(fit(x)) %*% metaprofiles(x); # H <- SH
	#h <- S %*% h; # H <- SH
	
	# standard divergence-reducing update for W with modified H
	w <- R_std.divergence.update.w(v, w, S %*% h)
	
	# rescale columns of W
	w <- sweep(w, 2L, colSums(w), '/', check.margin=FALSE)
	
	#return the modified model
	.basis(x) <- w; #metaprofiles(x) <- h;
	return(x)
}

## REGISTRATION
#' Algorithms \sQuote{nsNMF} and \sQuote{.R#nsNMF} provide the complete NMF algorithm from \cite{Pascual-Montano2006}, 
#' using the C++-optimised and plain R updates \code{\link{nmf_update.brunet}} and \code{\link{nmf_update.brunet_R}} 
#' respectively.
#' The stopping criterion is based on the stationarity of the connectivity matrix.
#' 
#' @inheritParams run,NMFStrategyIterative,matrix,NMFfit-method
#' @inheritParams nmf.stop.connectivity
#' 
#' @rdname nsNMF-nmf
#' @aliases nsNMF_R-nmf
nmfAlgorithm.nsNMF_R <- setNMFMethod('.R#nsNMF', objective='KL'
		, model='NMFns'
		, Update=nmf_update.ns_R
		, Stop='connectivity')

# Optmized version
#' @rdname nsNMF-nmf
nmfAlgorithm.nsNMF <- setNMFMethod('nsNMF', '.R#nsNMF', Update=nmf_update.ns)