1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
# Heatmap functions
#
# Author: Renaud Gaujoux
###############################################################################
#' @include NMF-class.R
#' @include aheatmap.R
NULL
#' @param object an R object
#' @param ... other arguments
#'
#' @export
#' @inline
#' @rdname NMF-defunct
setGeneric('metaHeatmap', function(object, ...) standardGeneric('metaHeatmap') )
#' Defunct method substituted by \code{\link{aheatmap}}.
setMethod('metaHeatmap', signature(object='matrix'),
function(object, ...){
local <- function(object, type=c('plain', 'consensus'), class
, unit.scaling=c('none', 'row', 'column'), palette="YlOrRd"
, rev.palette=FALSE, show.prediction=TRUE, ...){
.Defunct('metaHeatmap', 'NMF', "The S4 method 'metaHeatmap,matrix' is defunct, use 'aheatmap' instead.")
# # load libary RColorBrewer
# library(RColorBrewer)
#
# # retreive the graphical parameters and match them to the sub-sequent call to 'heatmap.plus.2'
# graphical.params <- list(...)
# names(graphical.params) <- .match.call.args(names(graphical.params), 'heatmap.plus.2', in.fun='metaHeatmap', call='NMF::metaHeatmap')
#
# type <- match.arg(type)
# if( type == 'consensus' ){
# # set default graphical parameters for type 'consensus'
# graphical.params <- .set.list.defaults(graphical.params
# , distfun = function(x){ as.dist(1-x) }
# , main='Consensus matrix'
# , symm=TRUE
# , Rowv=TRUE
# , revC=TRUE
# )
#
# if( missing(palette) ) palette <- 'RdYlBu'
# if( missing(rev.palette) ) rev.palette <- TRUE
# if( missing(unit.scaling) ) unit.scaling <- 'none'
# show.prediction <- FALSE # not used for consensus matrices
# }
#
# # apply unit scaling if necessary
# unit.scaling <- match.arg(unit.scaling)
# if( unit.scaling == 'column' )
# object <- apply(object, 2, function(x) x/sum(x))
# else if ( unit.scaling == 'row' )
# object <- t(apply(object, 1, function(x) x/sum(x)))
#
# # check validity of palette
# col.palette <- brewer.pal(brewer.pal.info[palette,'maxcolors'],palette)
# if( rev.palette ) col.palette <- rev(col.palette)
#
# # set default graphical parameters (if those are not already set)
# graphical.params <- .set.list.defaults(graphical.params
# , cexRow=0.8, cexCol=0.8
# , hclustfun = function(m) hclust(m,method="average")
# , dendrogram='none'
# , col=col.palette
# , scale='none', trace="none"
# , keysize=1, margins=c(5,10)
# )
#
# # if a known class is provided, add a side color over the top row
# if( !missing(class) ){
# if( !is.factor(class) ) class <- as.factor(class)
# class.num <- as.numeric(class)
# legend.pal <- palette(rainbow(max(2,nlevels(class))))[1:nlevels(class)]
# col.matrix <- matrix(legend.pal[class.num], ncol(object), 1)
#
# # show association with metagenes
# if( show.prediction ){
# # only if there is less than 9 metagenes
# # cf. limitation of brewer color palette
# if( nrow(object) <= 9 ){
# prediction <- .predict.nmf(object)
# prediction.num <- as.numeric(prediction)
# pal.pred <- brewer.pal(max(3,nrow(object)),'Set2')[1:nrow(object)]
# col.matrix <- cbind(pal.pred[prediction.num], col.matrix)
# graphical.params <- .set.list.defaults(graphical.params
# , RowSideColors=pal.pred
# )
# }
# else warning("NMF::metaHeatmap - cannot not show prediction for more than 9 metagenes.")
# }
# # do that otherwise heatmap.plus complains
# if( ncol(col.matrix) < 2 )
# col.matrix <- cbind(col.matrix, col.matrix)
#
# # add the ColSideColors
# graphical.params <- .set.list.defaults(graphical.params
# , ColSideColors=col.matrix
# )
# }
#
#
# res.heatmap <- do.call('heatmap.plus.2', c(list(object), graphical.params))
#
# if( !missing(class) ){
# # order properly the legend boxes
# class.num <- as.numeric(class[res.heatmap$colInd])
#
# occ <- NA # will store the current number of occurences
# class.max.occ <- rep(0, nlevels(class)) # will store the current maximum number of occurences per class
# class.start <- rep(NA, nlevels(class)) # will store the current start of the longer stretch per class
# last.l <- ''
# sapply( seq(length(class.num), 1, -1),
# function(i){
# l <- class.num[i]
# if(l==last.l){
# occ <<- occ + 1
# }else{
# occ <<- 1
# }
# if(occ > class.max.occ[l]){
# class.max.occ[l] <<- occ
# class.start[l] <<- i
# }
# last.l <<- l
# }
# )
#
# class.ord <- order(class.start)
# l.names <- levels(class)[class.ord]
# l.color <- legend.pal[class.ord]
# legend('top', title='Classes'
# , legend=l.names, fill=l.color
# , horiz=TRUE, bty='n')
# }
#
# # return invisible
# invisible(res.heatmap)
}
local(object, ...)
}
)
#' Deprecated method that is substituted by \code{\link{coefmap}} and \code{\link{basismap}}.
setMethod('metaHeatmap', signature(object='NMF'),
function(object, ...){
local <- function(object, what=c('samples', 'features'), filter=FALSE, ...){
what <- match.arg(what)
if( what == 'samples' ){
# send deprecated warning
.Defunct('coefmap', 'NMF', "Direct use of the S4-Method 'metaHeatmap' for 'NMF' objects is defunct, use 'coefmap' instead.")
# call the new function 'coefmap'
return( coefmap(object, ...) )
}else if( what == 'features' ){
# send deprecated warning
.Defunct('basismap', 'NMF', "Direct use of the S4-Method 'metaHeatmap' for 'NMF' objects is defunct, use 'basismap' instead.")
# call the new function 'basismap'
return( basismap(object, subsetRow=filter, ...) )
}
}
local(object, ...)
}
)
# match an annotation track against list of supported tracks
match_named_track <- function(annotation, tracks, msg, optional=FALSE){
idx <-
if( is.character(annotation) ){
i <- match(annotation, tracks, nomatch=if(optional) 0L else NA )
if( any(!is.na(i)) ){
if( !optional && any(is.na(i)) ){
stop(msg, "invalid track(s) [", str_out(annotation[is.na(i)])
, "]: should be one of ", str_out(tracks))
}
}
i
}else if( is.list(annotation) ){
sapply(annotation, function(x){
if( isString(x) ) match(x, tracks, nomatch=if(optional) 0L else NA )
else NA
})
}
if( is.null(idx) ) return()
ok <- !is.na(idx)
# result
# remaining annotations
ann <- annotation[!ok]
if( length(ann) == 0L ) ann <- NULL
# track annotations
tr <- unlist(annotation[which(ok)])
idx <- idx[which(ok)]
if( is.null(names(annotation)) ) names(tr) <- tr
else{
mn <- names(tr) == ''
names(tr)[mn] <- tr[mn]
}
others <- tr[idx==0L]
#
# list(ann=ann, tracks=tr[idx>0L], others=if(length(others)) others else NULL)
list(ann=as.list(ann), tracks=tr)
}
#' Heatmaps of NMF Factors
#'
#' The NMF package ships an advanced heatmap engine implemented by the function
#' \code{\link{aheatmap}}.
#' Some convenience heatmap functions have been implemented for NMF models,
#' which redefine default values for some of the arguments of \code{\link{aheatmap}},
#' hence tuning the output specifically for NMF models.
#'
#' \strong{IMPORTANT:} although they essentially have the same set of arguments,
#' their order sometimes differ between them, as well as from \code{\link{aheatmap}}.
#' We therefore strongly recommend to use fully named arguments when calling these functions.
#'
#' @rdname heatmaps
#' @name heatmap-NMF
#'
#' @examples
#'
#' ## More examples are provided in demo `heatmaps`
#' \dontrun{
#' demo(heatmaps)
#' }
#' ##
#'
#' # random data with underlying NMF model
#' v <- syntheticNMF(20, 3, 10)
#' # estimate a model
#' x <- nmf(v, 3)
#'
#' @demo Heatmaps of NMF objects
#'
#' #' # random data with underlying NMF model
#' v <- syntheticNMF(20, 3, 10)
#' # estimate a model
#' x <- nmf(v, 3)
#'
NULL
#' \code{basimap} draws an annotated heatmap of the basis matrix.
#'
#' @details
#' \code{basimap} default values for the following arguments of \code{\link{aheatmap}}:
#' \itemize{
#' \item the color palette;
#' \item the scaling specification, which by default scales each
#' row separately so that they sum up to one (\code{scale='r1'});
#' \item the column ordering which is disabled;
#' \item allowing for passing feature extraction methods in argument
#' \code{subsetRow}, that are passed to \code{\link{extractFeatures}}.
#' See argument description here and therein.
#' \item the addition of a default named annotation track, that shows
#' the dominant basis component for each row (i.e. each feature).
#'
#' This track is specified in argument \code{tracks} (see its argument description).
#' By default, a matching column annotation track is also displayed, but may be
#' disabled using \code{tracks=':basis'}.
#'
#' \item a suitable title and extra information like the fitting algorithm,
#' when \code{object} is a fitted NMF model.
#' }
#'
#' @param object an object from which is extracted NMF factors or a consensus
#' matrix
#' @param ... extra arguments passed to \code{\link{aheatmap}}.
#'
#' @rdname heatmaps
#' @inline
#' @export
#'
#' @examples
#'
#' # show basis matrix
#' basismap(x)
#' \dontrun{
#' # without the default annotation tracks
#' basismap(x, tracks=NA)
#' }
#'
#' @demo
#'
#' # highligh row only (using custom colors)
#' basismap(x, tracks=':basis', annColor=list(basis=1:3))
#'
#' ## character annotation vector: ok if it does not contain 'basis'
#' # annotate first and second row + automatic special track
#' basismap(x, annRow=c('alpha', 'beta'))
#' # no special track here
#' basismap(x, annRow=c('alpha', 'beta', ':basis'), tracks=NA)
#' # with special track `basis`
#' basismap(x, annRow=list(c('alpha', 'beta'), ':basis'), tracks=NA)
#' # highligh columns only (using custom colors)
#' basismap(x, tracks='basis:')
#'
#' # changing the name of the basis annotation track
#' basismap(x, annRow=list(new_name=':basis'))
#'
setGeneric('basismap', function(object, ...) standardGeneric('basismap') )
#' Plots a heatmap of the basis matrix of the NMF model \code{object}.
#' This method also works for fitted NMF models (i.e. \code{NMFfit} objects).
#'
#' @inheritParams aheatmap
#' @param subsetRow Argument that specifies how to filter the rows that
#' will appear in the heatmap.
#' When \code{FALSE} (default), all rows are used.
#' Besides the values supported by argument \code{subsetRow} of
#' \code{\link{aheatmap}}, other possible values are:
#'
#' \itemize{
#' \item \code{TRUE}: only the rows that are basis-specific are used.
#' The default selection method is from \cite{KimH2007}.
#' This is equivalent to \code{subsetRow='kim'}.
#'
#' \item a single \code{character} string or numeric value that specifies
#' the method to use to select the basis-specific rows, that should appear in the
#' heatmap (cf. argument \code{method} for function \code{\link{extractFeatures}}).
#'
#' Note \code{\link{extractFeatures}} is called with argument \code{nodups=TRUE},
#' so that features that are selected for multiple components only appear once.
#' }
#' @param tracks Special additional annotation tracks to highlight associations between
#' basis components and sample clusters:
#' \describe{
#' \item{basis}{matches each row (resp. column) to the most contributing basis component
#' in \code{basismap} (resp. \code{coefmap}).
#' In \code{basismap} (resp. \code{coefmap}), adding a track \code{':basis'} to
#' \code{annCol} (resp. \code{annRow}) makes the column (resp. row) corresponding to
#' the component being also highlited using the mathcing colours.}
#' }
#' @param info if \code{TRUE} then the name of the algorithm that fitted the NMF
#' model is displayed at the bottom of the plot, if available.
#' Other wise it is passed as is to \code{aheatmap}.
#'
#'
setMethod('basismap', signature(object='NMF'),
function(object, color = 'YlOrRd:50'
, scale = 'r1'
, Rowv=TRUE, Colv=NA, subsetRow=FALSE
, annRow=NA, annCol=NA, tracks = 'basis'
, main="Basis components", info = FALSE
, ...){
# resolve subsetRow if its a single value
if( is.atomic(subsetRow) && length(subsetRow) == 1 ){
subsetRow <-
if( isFALSE(subsetRow) )
NULL
else if( isTRUE(subsetRow) ) # use Kim and Park scoring scheme for filtering
extractFeatures(object, format='combine')
else if( is.character(subsetRow) || is.numeric(subsetRow) ) # use subsetRow as a filtering method
extractFeatures(object, method=subsetRow, format='combine')
else stop("NMF::basismap - invalid single value for argument 'subsetRow' [logical, numeric or character expected]")
}
# extract the basis vector matrix
x <- basis(object)
# add side information if requested
info <- if( isTRUE(info) && isNMFfit(object) )
paste("Method:", algorithm(object))
else if( isFALSE(info) ) NULL
else info
# process annotation tracks
ptracks <- process_tracks(x, tracks, annRow, annCol)
annRow <- ptracks$row
annCol <- ptracks$col
# set special annotation handler
specialAnnotation(1L, 'basis', function() predict(object, what='features'))
specialAnnotation(2L, 'basis', function() as.factor(1:nbasis(object)))
#
# call aheatmap on matrix
aheatmap(x, color = color, ...
, scale = scale, Rowv=Rowv, Colv = Colv, subsetRow = subsetRow
, annRow = annRow, annCol = annCol
, main = main, info = info)
}
)
# check if an object contains some value
anyValue <- function(x){
length(x) > 0L && !is_NA(x)
}
grep_track <- function(x){
list(
both = grepl("^[^:].*[^:]$", x) | grepl("^:.*:$", x)
, row = grepl("^:.*[^:]$", x)
, col = grepl("^[^:].*:$", x)
)
}
# process extra annotation tracks
process_tracks <- function(data, tracks, annRow=NA, annCol=NA){
if( anyValue(tracks) ){
# extract choices from caller function
formal.args <- formals(sys.function(sys.parent()))
choices <- eval(formal.args[[deparse(substitute(tracks))]])
if( isTRUE(tracks) ) tracks <- choices
else{
if( !is.character(tracks) )
stop("Special annotation tracks must be specified either as NA, TRUE or a character vector [", class(tracks), "].")
# check validity
pattern <- "^(:)?([^:]*)(:)?$"
basech <- str_match(choices, pattern)
basetr <- str_match(tracks, pattern)
tr <- basetr[, 3L]
# print(basetr)
# print(basech)
# extend base track name
i <- charmatch(tr, basech[,3L])
tr[!is.na(i)] <- basech[i[!is.na(i)],3L]
tracks_long <- str_c(basetr[,2L], tr, basetr[,4L])
# extend choices
tty_choice <- grep_track(choices)
if( any(tty_choice$both) )
choices <- c(choices, str_c(':', choices[tty_choice$both]), str_c(choices[tty_choice$both], ':'))
# look for exact match
itr <- charmatch(tracks_long, choices)
if( length(err <- which(is.na(itr))) ){
stop("Invalid special annotation track name [", str_out(tracks[err], Inf)
,"]. Should partially match one of ", str_out(choices, Inf), '.')
}
tracks[!is.na(itr)] <- choices[itr]
}
# print(tracks)
}
#
tty <- grep_track(tracks)
# create result object
build <- function(x, ann, data, margin){
t <-
if( anyValue(x) ) as.list(setNames(str_c(':', sub("(^:)|(:$)","",x)), names(x)))
else NA
# build annotations
atrack(ann, t, .DATA=amargin(data,margin))
}
res <- list()
res$row <- build(tracks[tty$both | tty$row], annRow, data, 1L)
res$col <- build(tracks[tty$both | tty$col], annCol, data, 2L)
#str(res)
res
}
#' \code{coefmap} draws an annotated heatmap of the coefficient matrix.
#'
#' @details
#' \code{coefmap} redefines default values for the following arguments of
#' \code{\link{aheatmap}}:
#' \itemize{
#' \item the color palette;
#' \item the scaling specification, which by default scales each
#' column separately so that they sum up to one (\code{scale='c1'});
#' \item the row ordering which is disabled;
#' \item the addition of a default annotation track, that shows the most
#' contributing basis component for each column (i.e. each sample).
#'
#' This track is specified in argument \code{tracks} (see its argument description).
#' By default, a matching row annotation track is also displayed, but can be disabled
#' using \code{tracks='basis:'}.
#' \item a suitable title and extra information like the fitting algorithm,
#' when \code{object} is a fitted NMF model.
#' }
#'
#' @rdname heatmaps
#' @inline
#' @export
#'
#' @examples
#'
#' # coefficient matrix
#' coefmap(x)
#' \dontrun{
#' # without the default annotation tracks
#' coefmap(x, tracks=NA)
#' }
#'
#' @demo
#'
#' # coefficient matrix
#' coefmap(x, annCol=c('alpha', 'beta')) # annotate first and second sample
#' coefmap(x, annCol=list('basis', Greek=c('alpha', 'beta'))) # annotate first and second sample + basis annotation
#' coefmap(x, annCol=c(new_name='basis'))
#'
setGeneric('coefmap', function(object, ...) standardGeneric('coefmap') )
#' The default method for NMF objects has special default values for
#' some arguments of \code{\link{aheatmap}} (see argument description).
setMethod('coefmap', signature(object='NMF'),
function(object, color = 'YlOrRd:50'
, scale = 'c1'
, Rowv = NA, Colv = TRUE
, annRow = NA, annCol = NA, tracks='basis'
, main="Mixture coefficients", info = FALSE
, ...){
# use the mixture coefficient matrix
x <- coef(object)
# add side information if requested
info <- if( isTRUE(info) && isNMFfit(object) )
paste("Method: ", algorithm(object))
else if( isFALSE(info) ) NULL
else info
# process annotation tracks
ptracks <- process_tracks(x, tracks, annRow, annCol)
annRow <- ptracks$row
annCol <- ptracks$col
# set special annotation handler
specialAnnotation(1L, 'basis', function() as.factor(1:nbasis(object)))
specialAnnotation(2L, 'basis', function() predict(object))
#
## process ordering
if( isString(Colv) ){
if( Colv == 'basis' ) Colv <- 'samples'
if( Colv == 'samples' )
Colv <- order(as.numeric(predict(object, Colv)))
}
##
# call aheatmap on matrix
aheatmap(x, ..., color = color
, scale = scale, Rowv = Rowv, Colv=Colv
, annRow=annRow, annCol = annCol
, main=main, info = info)
}
)
|