1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
############################################################################
# functions for gradient calculation
############################################################################
grad <- function (func, x, method="Richardson", method.args=list(), ...)
UseMethod("grad")
grad.default <- function(func, x, method="Richardson",
method.args=list(), ...){
# modified by Paul Gilbert from code by Xingqiao Liu.
# case 1/ scalar arg, scalar result (case 2/ or 3/ code should work)
# case 2/ vector arg, scalar result (same as special case jacobian)
# case 3/ vector arg, vector result (of same length, really 1/ applied multiple times))
f <- func(x, ...)
n <- length(x) #number of variables in argument
case1or3 <- n == length(f)
if((1 != length(f)) & !case1or3)
stop("grad assumes a scalar valued function.")
if(method=="simple"){
# very simple numerical approximation
args <- list(eps=1e-4) # default
args[names(method.args)] <- method.args
eps <- args$eps
if(case1or3) return((func(x+eps, ...)-f)/eps)
# now case 2
df <- rep(NA,n)
for (i in 1:n) {
dx <- x
dx[i] <- dx[i] +eps
df[i] <- (func(dx, ...)-f)/eps
}
return(df)
} else
if(method=="complex"){ # Complex step gradient
eps <- .Machine$double.eps
v <- try(func(x + eps * 1i, ...))
if(inherits(v, "try-error"))
stop("function does not accept complex argument as required by method 'complex'.")
if(!is.complex(v))
stop("function does not return a complex value as required by method 'complex'.")
if(case1or3) return(Im(v)/eps)
# now case 2
h0 <- rep(0, n)
g <- rep(NA, n)
for (i in 1:n) {
h0[i] <- eps * 1i
g[i] <- Im(func(x+h0, ...))/eps
h0[i] <- 0
}
return(g)
} else
if(method=="Richardson"){
args <- list(eps=1e-4, d=0.0001, zero.tol=sqrt(.Machine$double.eps/7e-7), r=4, v=2, show.details=FALSE) # default
args[names(method.args)] <- method.args
eps <- args$eps
d <- args$d
r <- args$r
v <- args$v
show.details <- args$show.details
a <- matrix(NA, r, n)
#b <- matrix(NA, (r - 1), n)
# first order derivatives are stored in the matrix a[k,i],
# where the indexing variables k for rows(1 to r), i for columns (1 to n),
# r is the number of iterations, and n is the number of variables.
h <- abs(d*x)+eps*(abs(x) < args$zero.tol)
for(k in 1:r) { # successively reduce h
if(case1or3) a[k,] <- (func(x + h, ...) - func(x - h, ...))/(2*h)
else for(i in 1:n) {
if((k != 1) && (abs(a[(k-1),i]) < 1e-20)) a[k,i] <- 0 #some func are unstable near zero
else a[k,i] <- (func(x + h*(i==seq(n)), ...) -
func(x - h*(i==seq(n)), ...))/(2*h[i])
}
if (any(is.na(a[k,]))) stop("function returns NA at ", h," distance from x.")
h <- h/v # Reduced h by 1/v.
}
if(show.details) {
cat("\n","first order approximations", "\n")
print(a, 12)
}
#------------------------------------------------------------------------
# 1 Applying Richardson Extrapolation to improve the accuracy of
# the first and second order derivatives. The algorithm as follows:
#
# -- For each column of the derivative matrix a,
# say, A1, A2, ..., Ar, by Richardson Extrapolation, to calculate a
# new sequence of approximations B1, B2, ..., Br used the formula
#
# B(i) =( A(i+1)*4^m - A(i) ) / (4^m - 1) , i=1,2,...,r-m
#
# N.B. This formula assumes v=2.
#
# -- Initially m is taken as 1 and then the process is repeated
# restarting with the latest improved values and increasing the
# value of m by one each until m equals r-1
#
# 2 Display the improved derivatives for each
# m from 1 to r-1 if the argument show.details=T.
#
# 3 Return the final improved derivative vector.
#-------------------------------------------------------------------------
for(m in 1:(r - 1)) {
a <- (a[2:(r+1-m),,drop=FALSE]*(4^m)-a[1:(r-m),,drop=FALSE])/(4^m-1)
if(show.details & m!=(r-1) ) {
cat("\n","Richarson improvement group No. ", m, "\n")
print(a[1:(r-m),,drop=FALSE], 12)
}
}
return(c(a))
} else stop("indicated method ", method, "not supported.")
}
jacobian <- function (func, x, method="Richardson",
method.args=list(), ...) UseMethod("jacobian")
jacobian.default <- function(func, x, method="Richardson",
method.args=list(), ...){
f <- func(x, ...)
n <- length(x) #number of variables.
if(method=="simple"){
# very simple numerical approximation
args <- list(eps=1e-4) # default
args[names(method.args)] <- method.args
eps <- args$eps
df <-matrix(NA, length(f), n)
for (i in 1:n) {
dx <- x
dx[i] <- dx[i] +eps
df[,i] <- (func(dx, ...)-f)/eps
}
return(df)
} else
if(method=="complex"){ # Complex step gradient
# Complex step Jacobian
eps <- .Machine$double.eps
h0 <- rep(0, n)
h0[1] <- eps * 1i
v <- try(func(x+h0, ...))
if(inherits(v, "try-error"))
stop("function does not accept complex argument as required by method 'complex'.")
if(!is.complex(v))
stop("function does not return a complex value as required by method 'complex'.")
h0[1] <- 0
jac <- matrix(NA, length(v), n)
jac[, 1] <- Im(v)/eps
if (n == 1) return(jac)
for (i in 2:n) {
h0[i] <- eps * 1i
jac[, i] <- Im(func(x+h0, ...))/eps
h0[i] <- 0
}
return(jac)
} else
if(method=="Richardson"){
args <- list(eps=1e-4, d=0.0001, zero.tol=sqrt(.Machine$double.eps/7e-7),
r=4, v=2, show.details=FALSE) # default
args[names(method.args)] <- method.args
eps <- args$eps
d <- args$d
r <- args$r
v <- args$v
a <- array(NA, c(length(f),r, n) )
h <- abs(d*x)+eps*(abs(x) < args$zero.tol)
for(k in 1:r) { # successively reduce h
for(i in 1:n) {
a[,k,i] <- (func(x + h*(i==seq(n)), ...) -
func(x - h*(i==seq(n)), ...))/(2*h[i])
#if((k != 1)) a[,(abs(a[,(k-1),i]) < 1e-20)] <- 0 #some func are unstable near zero
}
h <- h/v # Reduced h by 1/v.
}
for(m in 1:(r - 1)) {
a <- (a[,2:(r+1-m),,drop=FALSE]*(4^m)-a[,1:(r-m),,drop=FALSE])/(4^m-1)
}
# drop second dim of a, which is now 1 (but not other dim's even if they are 1
return(array(a, dim(a)[c(1,3)]))
} else stop("indicated method ", method, "not supported.")
}
hessian <- function (func, x, method="Richardson",
method.args=list(), ...) UseMethod("hessian")
hessian.default <- function(func, x, method="Richardson",
method.args=list(), ...){
if(1!=length(func(x, ...)))
stop("Richardson method for hessian assumes a scalar valued function.")
if(method=="complex"){ # Complex step hessian
args <- list(eps=1e-4, d=0.1,
zero.tol=sqrt(.Machine$double.eps/7e-7), r=4, v=2)
args[names(method.args)] <- method.args
# the CSD part of this uses eps=.Machine$double.eps
# but the jacobian is Richardson and uses method.args
return(jacobian(func=function(fn, x, ...){grad(func=fn, x=x,
method="complex", method.args=list(eps=.Machine$double.eps), ...)},
x=x, fn=func, method.args=args, ...))
} else
if(method != "Richardson") stop("method not implemented.")
args <- list(eps=1e-4, d=0.1, zero.tol=sqrt(.Machine$double.eps/7e-7),
r=4, v=2, show.details=FALSE) # default
args[names(method.args)] <- method.args
D <- genD(func, x, method=method, method.args=args, ...)$D
if(1!=nrow(D)) stop("BUG! should not get here.")
H <- diag(NA,length(x))
u <- length(x)
for(i in 1:length(x))
{for(j in 1:i)
{u <- u + 1
H[i,j] <- D[,u]
} }
H <- H +t(H)
diag(H) <- diag(H)/2
H
}
#######################################################################
# Bates & Watts D matrix calculation
#######################################################################
genD <- function(func, x, method="Richardson",
method.args=list(), ...)UseMethod("genD")
genD.default <- function(func, x, method="Richardson",
method.args=list(), ...){
# additional cleanup by Paul Gilbert (March, 2006)
# modified substantially by Paul Gilbert (May, 1992)
# from original code by Xingqiao Liu, May, 1991.
# This function is not optimized for S speed, but is organized in
# the same way it could be (was) implemented in C, to facilitate checking.
# v reduction factor for Richardson iterations. This could
# be a parameter but the way the formula is coded it is assumed to be 2.
if(method != "Richardson") stop("method not implemented.")
args <- list(eps=1e-4, d=0.0001, zero.tol=sqrt(.Machine$double.eps/7e-7),
r=4, v=2) # default
args[names(method.args)] <- method.args
eps <- args$eps
d <- args$d
r <- args$r
v <- args$v
if (v!=2) stop("The current code assumes v is 2 (the default).")
#func.args <- list(...)
#f0 <- do.call("func",append(list(x), func.args))
f0 <- func(x, ...)
# f0 is the value of the function at x.
p <- length(x) # number of parameters (theta)
h0 <- abs(d*x)+eps*(abs(x) < args$zero.tol)
D <- matrix(0, length(f0),(p*(p + 3))/2)
#length(f0) is the dim of the sample space
#(p*(p + 3))/2 is the number of columns of matrix D.( first
# der. & lower triangle of Hessian)
Daprox <- matrix(0, length(f0),r)
Hdiag <- matrix(0,length(f0),p)
Haprox <- matrix(0,length(f0),r)
for(i in 1:p) # each parameter - first deriv. & hessian diagonal
{h <-h0
for(k in 1:r) # successively reduce h
{f1 <- func(x+(i==(1:p))*h, ...)
f2 <- func(x-(i==(1:p))*h, ...)
#f1 <- do.call("func",append(list(x+(i==(1:p))*h), func.args))
#f2 <- do.call("func",append(list(x-(i==(1:p))*h), func.args))
Daprox[,k] <- (f1 - f2) / (2*h[i]) # F'(i)
Haprox[,k] <- (f1-2*f0+f2)/ h[i]^2 # F''(i,i) hessian diagonal
h <- h/v # Reduced h by 1/v.
NULL
}
for(m in 1:(r - 1))
for ( k in 1:(r-m))
{Daprox[,k]<-(Daprox[,k+1]*(4^m)-Daprox[,k])/(4^m-1)
Haprox[,k]<-(Haprox[,k+1]*(4^m)-Haprox[,k])/(4^m-1)
NULL
}
D[,i] <- Daprox[,1]
Hdiag[,i] <- Haprox[,1]
NULL
}
u <- p
for(i in 1:p) # 2nd derivative - do lower half of hessian only
{for(j in 1:i)
{u <- u + 1
if (i==j) { D[,u] <- Hdiag[,i]; NULL}
else
{h <-h0
for(k in 1:r) # successively reduce h
{f1 <- func(x+(i==(1:p))*h + (j==(1:p))*h, ...)
f2 <- func(x-(i==(1:p))*h - (j==(1:p))*h, ...)
#f1 <- do.call("func", append(
# list(x+(i==(1:p))*h + (j==(1:p))*h), func.args))
#f2 <- do.call("func",append(
# list(x-(i==(1:p))*h - (j==(1:p))*h), func.args))
Daprox[,k]<- (f1 - 2*f0 + f2 -
Hdiag[,i]*h[i]^2 -
Hdiag[,j]*h[j]^2)/(2*h[i]*h[j]) # F''(i,j)
h <- h/v # Reduced h by 1/v.
}
for(m in 1:(r - 1))
for ( k in 1:(r-m))
{Daprox[,k]<-(Daprox[,k+1]*(4^m)-Daprox[,k])/(4^m-1); NULL}
D[,u] <- Daprox[,1]
NULL
}
}
}
D <- list(D=D, p=length(x), f0=f0, func=func, x=x, d=d,
method=method, method.args=args)# Darray constructor (genD.default)
class(D) <- "Darray"
invisible(D)
}
|