File: MultigroupRobustSE_test.R

package info (click to toggle)
r-cran-openmx 2.18.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 15,908 kB
  • sloc: cpp: 35,071; ansic: 13,690; fortran: 2,001; sh: 1,362; python: 350; perl: 21; makefile: 5
file content (144 lines) | stat: -rw-r--r-- 5,981 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#
#   Copyright 2007-2019 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

# -----------------------------------------------------------------------

require(OpenMx)
data(twinData)

Vars      <- 'bmi'
nv        <- 1       # number of variables
ntv       <- nv*2    # number of total variables
selVars   <- paste(Vars,c(rep(1,nv),rep(2,nv)),sep="")   #c('bmi1','bmi2')

# Select Data for Analysis
selData <- subset(twinData, twinData$zyg %in% c(1,3))
selData$mzdef <- as.numeric(selData$zyg==1)
selData$dzdef <- as.numeric(selData$zyg==3)
selData <- selData[,c(selVars,"mzdef","dzdef")]

mzData    <- subset(twinData, zyg==1, selVars)
dzData    <- subset(twinData, zyg==3, selVars)

# Generate Descriptive Statistics
colMeans(mzData,na.rm=TRUE)
colMeans(dzData,na.rm=TRUE)
cov(mzData,use="complete")
cov(dzData,use="complete")

# Set Starting Values
svMe      <- 20      # start value for means
svPa      <- .5      # start value for path coefficients (sqrt(variance/#ofpaths))

# ACE Model
# Matrices declared to store a, d, and e Path Coefficients
pathA     <- mxMatrix( type="Full", nrow=nv, ncol=nv, 
											 free=TRUE, values=svPa, label="a11", name="a" ) 
pathC     <- mxMatrix( type="Full", nrow=nv, ncol=nv, 
											 free=TRUE, values=svPa, label="c11", name="c" )
pathE     <- mxMatrix( type="Full", nrow=nv, ncol=nv, 
											 free=TRUE, values=svPa, label="e11", name="e" )

# Matrices generated to hold A, C, and E computed Variance Components
covA      <- mxAlgebra( expression=a %*% t(a), name="A" )
covC      <- mxAlgebra( expression=c %*% t(c), name="C" ) 
covE      <- mxAlgebra( expression=e %*% t(e), name="E" )

# Algebra to compute total variances
covP      <- mxAlgebra( expression=A+C+E, name="V" )

# Use a different mean for MZ and DZ to test imxRowGradients() correctly handling different parameter labels in different submodels:
meanMZ     <- mxMatrix( type="Full", nrow=1, ncol=ntv, 
												free=TRUE, values=svMe, label="mzmean", name="MZmean" )
meanDZ     <- mxMatrix( type="Full", nrow=1, ncol=ntv, 
												free=TRUE, values=svMe, label="dzmean", name="DZmean" )
covMZ     <- mxAlgebra( expression=rbind( cbind(V, A+C), 
																					cbind(A+C, V)), name="expCovMZ" )
covDZ     <- mxAlgebra( expression=rbind( cbind(V, 0.5%x%A+C), 
																					cbind(0.5%x%A+C , V)), name="expCovDZ" )

# Data objects for Multiple Groups
dataMZ    <- mxData( observed=mzData, type="raw" )
dataDZ    <- mxData( observed=dzData, type="raw" )

# Objective objects for Multiple Groups
expMZ     <- mxExpectationNormal( covariance="expCovMZ", means="MZmean", 
																	dimnames=selVars )
expDZ     <- mxExpectationNormal( covariance="expCovDZ", means="DZmean", 
																	dimnames=selVars )
funML     <- mxFitFunctionML()

# Combine Groups
pars      <- list( pathA, pathC, pathE, covA, covC, covE, covP )
modelMZ   <- mxModel( pars, meanMZ, covMZ, dataMZ, expMZ, funML, name="MZ" )
modelDZ   <- mxModel( pars, meanDZ, covDZ, dataDZ, expDZ, funML, name="DZ" )
fitML     <- mxFitFunctionMultigroup(c("MZ","DZ") )
twinACEModel  <- mxModel( "ACE", pars, modelMZ, modelDZ, fitML )
twinACEFit <- mxRun(twinACEModel)
summary(twinACEFit)
multigroupRSE <- imxRobustSE(twinACEFit, details=TRUE)



#Single-group twin model:
singlegroup <- mxModel(
	"SingleGroupTwinModel",
	mxData(selData,type="raw"),
	pars, meanMZ, meanDZ,
	mxMatrix(type="Full",nrow=1,ncol=1,labels=c("data.mzdef"),name="MZdef"),
	mxMatrix(type="Full",nrow=1,ncol=1,labels=c("data.dzdef"),name="DZdef"),
	mxAlgebra(MZdef%x%MZmean + DZdef%x%DZmean, name="Mu"),
	mxAlgebra(MZdef + DZdef*0.5, name="kinship"),
	mxAlgebra(rbind(cbind(V, kinship%x%A+C), 
									cbind(kinship%x%A+C , V)), name="Sigma"),
	mxExpectationNormal(covariance="Sigma",means="Mu",dimnames=selVars),
	mxFitFunctionML()
)
singlegroupFit <- mxRun(singlegroup)
singlegroupRSE <- imxRobustSE(singlegroupFit,TRUE)
omxCheckCloseEnough(singlegroupRSE[[1]], multigroupRSE[[1]], 1e-5)
omxCheckCloseEnough(singlegroupRSE[[2]], multigroupRSE[[2]], 1e-6)
omxCheckCloseEnough(singlegroupRSE[[3]], multigroupRSE[[3]], 1e-5)
omxCheckCloseEnough(singlegroupRSE[[4]], multigroupRSE[[4]], 5e-3)
omxCheckCloseEnough(singlegroupRSE[[5]], multigroupRSE[[5]], 1e-4)



#Check for existence and dimnames of output:
pn <- c("a11","c11","e11","mzmean","dzmean")
omxCheckTrue(length(multigroupRSE$SE))
omxCheckEquals(names(multigroupRSE$SE),pn)
omxCheckTrue(length(multigroupRSE$cov))
omxCheckEquals(rownames(multigroupRSE$cov),pn)
omxCheckEquals(colnames(multigroupRSE$cov),pn)
omxCheckTrue(length(multigroupRSE$bread))
omxCheckEquals(rownames(multigroupRSE$bread),pn)
omxCheckEquals(colnames(multigroupRSE$bread),pn)
omxCheckTrue(length(multigroupRSE$meat))
omxCheckEquals(rownames(multigroupRSE$meat),pn)
omxCheckEquals(colnames(multigroupRSE$meat),pn)
omxCheckTrue(length(multigroupRSE$TIC))
omxCheckTrue(length(singlegroupRSE$SE))
omxCheckEquals(names(singlegroupRSE$SE),pn)
omxCheckTrue(length(singlegroupRSE$cov))
omxCheckEquals(rownames(singlegroupRSE$cov),pn)
omxCheckEquals(colnames(singlegroupRSE$cov),pn)
omxCheckTrue(length(singlegroupRSE$bread))
omxCheckEquals(rownames(singlegroupRSE$bread),pn)
omxCheckEquals(colnames(singlegroupRSE$bread),pn)
omxCheckTrue(length(singlegroupRSE$meat))
omxCheckEquals(rownames(singlegroupRSE$meat),pn)
omxCheckEquals(colnames(singlegroupRSE$meat),pn)
omxCheckTrue(length(singlegroupRSE$TIC))