1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
#
# Copyright 2007-2018 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
require(OpenMx)
if (mxOption(NULL,"Default optimizer")!='NPSOL') stop("SKIP")
set.seed(1611150)
x <- matrix(rnorm(1000))
colnames(x) <- "x"
m1 <- mxModel(
"m1",
mxData(observed=x,type="raw"),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0,labels="mu",name="Mu"),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=1,labels="sigma2",name="Sigma",lbound=0),
mxExpectationNormal(covariance="Sigma",means="Mu",dimnames=c("x")),
mxFitFunctionML()
)
run1 <- mxRun(m1)
hess.ini <- matrix(-2*c(-1000/1,0,0,-1000/2),nrow=2,ncol=2)
ws <- chol(hess.ini)
plan <- mxComputeSequence(steps=list(
mxComputeGradientDescent(engine="NPSOL",warmStart=ws),
mxComputeNumericDeriv(),
mxComputeStandardError(),
mxComputeHessianQuality(),
mxComputeReportDeriv(),
mxComputeReportExpectation()
))
m2 <- mxModel(
"m2",
plan,
mxData(observed=x,type="raw"),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0,labels="mu",name="Mu"),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=1,labels="sigma2",name="Sigma",lbound=0),
mxExpectationNormal(covariance="Sigma",means="Mu",dimnames=c("x")),
mxFitFunctionML()
)
run2 <- mxRun(m2)
omxCheckTrue(run2$output$evaluations < run1$output$evaluations)
plan2 <- mxComputeSequence(steps=list(
mxComputeGradientDescent(engine="NPSOL",warmStart=matrix(1,1,1)),
mxComputeNumericDeriv(),
mxComputeStandardError(),
mxComputeHessianQuality(),
mxComputeReportDeriv(),
mxComputeReportExpectation()
))
m3 <- mxModel(
"m3",
plan2,
mxData(observed=x,type="raw"),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=-0.3,labels="mu",name="Mu"),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.97,labels="sigma2",name="Sigma",lbound=0),
mxExpectationNormal(covariance="Sigma",means="Mu",dimnames=c("x")),
mxFitFunctionML()
)
omxCheckWarning(mxRun(m3),"MxComputeGradientDescent: warmStart size 1 does not match number of free parameters 2 (ignored)")
#Test "internal" warm start:
plan3 <- mxComputeSequence(steps=list(
mxComputeOnce(from="m4.fitfunction",what="hessian"),
mxComputeGradientDescent(engine="NPSOL"),
mxComputeNumericDeriv(),
mxComputeStandardError(),
mxComputeHessianQuality(),
mxComputeReportDeriv(),
mxComputeReportExpectation()
))
m4 <- mxModel(
"m4",
mxModel(
"sub",
mxData(observed=x,type="raw"),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0,labels="mu",name="Mu"),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=1,labels="sigma2",name="Sigma",lbound=0),
mxExpectationNormal(covariance="Sigma",means="Mu",dimnames=c("x")),
mxFitFunctionML()
),
plan3,
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=1,labels="sigma2",name="Sigma",lbound=0),
mxAlgebra(-2*rbind(
cbind(-1000/Sigma, 0),
cbind(0, -1000/(2*Sigma^2))
), name="hess",dimnames=list(c("mu","sigma2"),c("mu","sigma2")) ),
mxFitFunctionAlgebra(algebra="sub.fitfunction",hessian="hess",numObs=1000)
)
run4 <- mxRun(m4)
omxCheckTrue(run4$output$evaluations < run1$output$evaluations)
#The 1 additional funeval is, of course, from the MxComputeOnce step:
omxCheckTrue(run4$output$evaluations == run2$output$evaluations+1)
|