1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
#
# Copyright 2007-2021 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#------------------------------------------------------------------------------
##' Build the model used for mxAutoStart
##'
##' @param model The MxModel for which starting values are desired
##' @param type The type of starting values to obtain, currently unweighted or diagonally weighted least squares, ULS or DWLS
##' @return
##' an MxModel that can be run to obtain starting values
##' @seealso \link{mxAutoStart}
omxBuildAutoStartModel <- function(model, type=c('ULS', 'DWLS')) {
type <- match.barg(type)
# Run the model through all the frontend processing to check for errors
blah <- mxRun(model, silent=TRUE, suppressWarnings=FALSE, onlyFrontend=TRUE)
blah <- NULL
# If no errors found, continue with processing for autostart.
if(is.null(model@fitfunction)){
stop("I don't work with null fit functions.")
}
if(imxHasDefinitionVariable(model)){
stop("Definition variables found. Automatic start values are not implemented for models with definition variables.\nNo plans have been made to add these soon.")
}
isMultiGroupModel <- is.null(model$expectation) && (class(model$fitfunction) %in% "MxFitFunctionMultigroup")
if( isMultiGroupModel ){
submNames <- sapply(strsplit(model$fitfunction$groups, ".", fixed=TRUE), "[", 1)
wmodel <- model
for(amod in submNames){
wmodel[[amod]] <- mxModel(model[[amod]], autoStartDataHelper(model, subname=amod, type=type))
}
wmodel <- mxModel(wmodel, mxFitFunctionMultigroup(submNames))
} else {
wmodel <- mxModel(model, autoStartDataHelper(model, type=type))
}
wmodel <- mxOption(wmodel, "Calculate Hessian", "No")
wmodel <- mxOption(wmodel, "Standard Errors", "No")
wmodel
}
##' Automatically set starting values for an MxModel
##'
##' @param model The MxModel for which starting values are desired
##' @param type The type of starting values to obtain, currently unweighted or diagonally weighted least squares, ULS or DWLS
##'
##' @details
##' This function automatically picks very good starting values for many models (RAM, LISREL, Normal), including multiple group versions of these.
##' It works for models with algebras. Models of continuous, ordinal, and joint ordinal-continuous variables are also acceptable.
##' It works for models with covariance or raw data.
##' However, it does not currently work for models with definition variables, state space models, and item factor analysis models.
##'
##' The method used to obtain new starting values is quite simple. The user's model is changed to an unweighted least squares (ULS) model. The ULS model is estimated and its final point estimates are returned as the new starting values. Optionally, diagonally weighted least squares (DWLS) can be used instead with the \code{type} argument.
##'
##' Please note that ULS is sensitive to the scales of your variables. For example, if you have variables with means of 20 and variances of 0.001, then ULS will "weight" the means 20,000 times more than the variances and might result in zero variance estimates. Likewise if one variable has a variance of 20 and another has a variance of 0.001, the same problem may arise. To avoid this, make sure your variables are scaled accordingly. You could also use \code{type='DWLS'} to have the function use diagonally weighted least squares to obtain starting values. Of course, using diagonally weighted least squares will take much much longer and will usually not provide better starting values than unweighted least squares.
##'
##' Also note that if \code{model} contains a \link[=mxExpectationGREML]{GREML expectation}, argument \code{type} is ignored, and the function always uses a form of ULS.
##'
##' @return
##' an MxModel with new free parameter values
##'
##' @examples
##' # Use the frontpage model with negative variances to show better
##' # starting values
##' library(OpenMx)
##' data(demoOneFactor)
##'
##' latents = c("G") # the latent factor
##' manifests = names(demoOneFactor) # manifest variables to be modeled
##'
##' m1 <- mxModel("One Factor", type = "RAM",
##' manifestVars = manifests, latentVars = latents,
##' mxPath(from = latents, to = manifests),
##' mxPath(from = manifests, arrows = 2, values=-.2),
##' mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
##' mxPath(from = "one", to = manifests),
##' mxData(demoOneFactor, type = "raw")
##' )
##'
##' # Starting values imply negative variances!
##' mxGetExpected(m1, 'covariance')
##'
##' # Use mxAutoStart to get much better starting values
##' m1s <- mxAutoStart(m1)
##' mxGetExpected(m1s, 'covariance')
mxAutoStart <- function(model, type=c('ULS', 'DWLS')){
warnModelCreatedByOldVersion(model)
if(is(model$expectation,"MxExpectationGREML")){
return(autoStartGREML(model))
}
type <- match.barg(type)
defaultComputePlan <- (is.null(model@compute) || is(model@compute, 'MxComputeDefault'))
if(!defaultComputePlan){
customPlan <- model@compute
model@compute <- NULL
}
wmodel <- mxRun(omxBuildAutoStartModel(model, type), silent=TRUE)
newparams <- coef(wmodel)
oldparams <- coef(model)
model <- omxSetParameters(model, values=newparams, labels=names(oldparams))
if(!defaultComputePlan){
model@compute <- customPlan
}
return(model)
}
#------------------------------------------------------------------------------
autoStartDataHelper <- function(model, subname=model@name, type){
if(is.null(model[[subname]]@data)){
stop(paste("Your model named", model[[subname]]@name, "doesn't have any data? Sad."))
}
exps <- mxGetExpected(model, c('covariance', 'means', 'thresholds'), subname=subname)
useVars <- dimnames(exps$covariance)[[1]]
data <- model[[subname]]$data$observed
origDataType <- model[[subname]]$data$type
if(origDataType %in% 'cov'){
data <- data[useVars,useVars]
nrowData <- model[[subname]]$data$numObs
meanData <- model[[subname]]$data$means
mdata <- mxData(data, type=origDataType, numObs=nrowData, observedStats=list(cov=data))
if (length(exps$means) > 0) {
mdata$observedStats$means <- meanData
}
} else if (origDataType == 'raw') {
data <- data[,useVars, drop = FALSE]
# This conditional is for cases when the model has only 1 endogenous variable:
if(!is.matrix(data) && !is.data.frame(data)){
data <- as.matrix(data)
colnames(data) <- useVars
}
if (type == 'ULS' && !any(sapply(data, is.ordered))) {
# special case for ULS, all continuous
os <- list(cov=cov(data, use='pair'))
if (length(exps$means) > 0) os$means <- colMeans(data, na.rm=TRUE)
return(list(mxData(data, type='raw', numObs=nrow(data), observedStats=os),
mxFitFunctionWLS('ULS', fullWeight=FALSE)))
}
mdata <- mxData(data, 'raw')
} else {
stop(paste("mxAutoStart for",origDataType,"data is not implemented"))
}
list(mdata, mxFitFunctionWLS(type, ifelse(length(exps$means) > 0, 'marginals', 'cumulants'),
type != 'ULS'))
}
autoStartGREML <- function(model){
if(model$expectation$dataset.is.yX){
y <- model$data$observed[,1]
X <- model$data$observed[,-1]
casesToDrop <- model$expectation$casesToDrop
} else{
dat <- mxGREMLDataHandler(
data=model$data$observed,
yvars=model$expectation$yvars,
Xvars=model$expectation$Xvars,
addOnes=model$expectation$addOnes,
blockByPheno=model$expectation$blockByPheno,
staggerZeroes=model$expectation$staggerZeroes
)
y <- dat$yX[,1]
X <- dat$yX[,-1]
casesToDrop <- dat$casesToDrop
rm(dat)
}
olsresids <- lm(y~X+0)$residuals
rm(X,y)
Vdim <- nrow(mxEvalByName(model$expectation$V,model,T))
# Create variable bindings so CRAN check doesn't complain about mxAlgebra expressions
filt <- NULL
S <- NULL
V <- NULL
if(length(olsresids) < Vdim){
filt_mtx <- mxMatrix(type="Full",nrow=1,ncol=Vdim,free=F,values=1,name="filt")
filt_mtx@values[casesToDrop] <- 0
aff <- mxAlgebra( sum((vech(S) - vech(omxSelectRowsAndCols(V,filt)))%^%2), name="algfitfunc")
} else{
filt_mtx <- mxMatrix(type="Full",nrow=1,ncol=1,free=F,values=1,name="filt")
aff <- mxAlgebra( sum((vech(S)-vech(V))%^%2), name="algfitfunc")
}
tempmod <- mxModel(
"tmp",
model,
aff,
filt_mtx,
mxMatrix(type="Symm",nrow=length(olsresids),free=F,values=outer(olsresids,olsresids),name="S",condenseSlots=T),
mxAlgebraFromString(paste(model$name,model$expectation$V,sep="."),name="V"),
mxFitFunctionAlgebra("algfitfunc")
)
rm(olsresids,aff,filt_mtx)
tempmod <- mxOption(tempmod,"Calculate Hessian","No")
tempmod <- mxOption(tempmod,"Standard Errors","No")
tempmod <- mxRun(tempmod,silent=T)
newparams <- coef(tempmod)
rm(tempmod)
oldparams <- coef(model)
model <- omxSetParameters(model, values=newparams, labels=names(oldparams))
return(model)
}
|