1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
#
# Copyright 2007-2020 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
cycleDetection <- function(flatModel) {
dependencies <- new("MxDirectedGraph")
if (length(flatModel@fitfunctions) > 0) {
for(i in 1:length(flatModel@fitfunctions)) {
dependencies <- addFitFunctionDetection(flatModel@fitfunctions[[i]], flatModel, dependencies)
# if (!is(dependencies, "MxDirectedGraph")) stop("Lost dependencies")
}
}
if (length(flatModel@expectations) > 0) {
for(i in 1:length(flatModel@expectations)) {
dependencies <- addExpectationDetection(flatModel@expectations[[i]], dependencies)
# if (!is(dependencies, "MxDirectedGraph")) stop("Lost dependencies")
}
}
if (length(flatModel@algebras) > 0) {
for(i in 1:length(flatModel@algebras)) {
dependencies <- addAlgebraDetection(flatModel@algebras[[i]], dependencies)
}
}
if (length(flatModel@matrices) > 0) {
for(i in 1:length(flatModel@matrices)) {
dependencies <- addMatrixDetection(flatModel@matrices[[i]], dependencies)
}
}
containsCycle(dependencies, flatModel)
return(dependencies)
}
containsCycle <- function(graph, flatModel) {
nodes <- graph@nodes
if (length(nodes) > 0) {
colors <- character()
backedges <- character()
colors[nodes] <- 'white'
info <- list(colors, backedges)
for(i in 1:length(nodes)) {
node <- nodes[[i]]
if (colors[[node]] == 'white') {
info <- cycleVisitor(graph, node, info, flatModel@name)
colors <- info[[1]]
}
}
}
}
cycleVisitor <- function(graph, vertex, info, modelname) {
colors <- info[[1]]
backedges <- info[[2]]
colors[[vertex]] <- 'grey'
edges <- graph@edges[[vertex]]
if (!is.null(edges) && length(edges) > 0) {
for(i in 1:length(edges)) {
destination <- edges[[i]]
backedges[[destination]] <- vertex
if (colors[[destination]] == 'grey') {
reportCycle(backedges, destination, modelname)
} else if (colors[[destination]] == 'white') {
info <- list(colors, backedges)
info <- cycleVisitor(graph, destination, info, modelname)
colors <- info[[1]]
backedges <- info[[2]]
}
}
}
colors[[vertex]] <- 'black'
info <- list(colors, backedges)
return(info)
}
reportCycle <- function(backedges, destination, modelname) {
target <- backedges[[destination]]
cycle <- union(destination, target)
while(target != destination) {
target <- backedges[[target]]
cycle <- union(cycle, target)
}
cycle <- sapply(cycle, simplifyName, modelname)
report <- cycle[!sapply(cycle, hasSquareBrackets)]
stop(paste("A cycle has been detected",
"in model", omxQuotes(modelname),
". It involved the following elements:",
omxQuotes(report)),
"\nA common trigger for this error is not providing a ",
"name string as the first parameter to mxModel."
, call. = FALSE)
}
addFitFunctionDetection <- function(fitfunction, flatModel, dependencies) {
dependencies <- genericFitDependencies(fitfunction, flatModel, dependencies)
return(dependencies)
}
addExpectationDetection <- function(expectation, dependencies) {
dependencies <- genericExpDependencies(expectation, dependencies)
return(dependencies)
}
addMatrixDetection <- function(matrix, dependencies) {
labels <- matrix@labels
select <- matrix@.squareBrackets
subs <- labels[select]
if (length(subs) > 0) {
for(i in 1:length(subs)) {
components <- splitSubstitution(subs[[i]])
name <- components[[1]]
dependencies <- imxAddDependency(name, matrix@name, dependencies)
}
}
return(dependencies)
}
addAlgebraDetection <- function(algebra, dependencies) {
if (algebra@fixed) return(dependencies)
sink <- algebra@name
formula <- algebra@formula
dependencies <- addFormulaDetection(formula, sink, dependencies)
return(dependencies)
}
addFormulaDetection <- function(formula, sink, dependencies) {
if (length(formula) == 1) {
dependencies <- imxAddDependency(as.character(formula), sink, dependencies)
} else {
for (i in 2:length(formula)) {
dependencies <- addFormulaDetection(formula[[i]], sink, dependencies)
}
}
return(dependencies)
}
##' Add a dependency
##'
##' The dependency tracking system ensures that algebra and
##' fitfunctions are not recomputed if their inputs have not changed.
##' Dependency information is computed prior to handing the model off
##' to the optimizer to reduce overhead during optimization.
##'
##' Each free parameter keeps track of all the objects that store that
##' free parameter and the transitive closure of all algebras and fit
##' functions that depend on that free parameter. Similarly, each
##' definition variable keeps track of all the objects that store that
##' free parameter and the transitive closure of all the algebras and
##' fit functions that depend on that free parameter. At each
##' iteration of the optimization, when the free parameter values are
##' updated, all of the dependencies of that free parameter are marked
##' as dirty (see \code{omxFitFunction.repopulateFun}). After an
##' algebra or fit function is computed, \code{omxMarkClean()} is
##' called to to indicate that the algebra or fit function is updated.
##' Similarly, when definition variables are populated in FIML, all of
##' the dependencies of the definition variables are marked as dirty.
##' Particularly for FIML, the fact that non-definition-variable
##' dependencies remain clean is a big performance gain.
##'
##' @param source a character vector of the names of the computation sources (inputs)
##' @param sink the name of the computation sink (output)
##' @param dependencies the dependency graph
imxAddDependency <- function(source, sink, dependencies) {
if (length(source) == 0) return(dependencies)
dependencies <- addNode(source, dependencies)
dependencies <- addNode(sink, dependencies)
for (s1 in sink) {
dependencies <- addEdge(source, s1, dependencies)
}
dependencies
}
|