File: MxDataWLS.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (924 lines) | stat: -rwxr-xr-x 33,283 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
#
#   Copyright 2007-2021 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.


#------------------------------------------------------------------------------

setClass(Class = "MxDataLegacyWLS",
	 contains = "MxDataStatic",
	 representation = representation(
		acov   = "matrix",
		fullWeight = "matrix",
		thresholds = "matrix"))

setMethod("initialize", "MxDataLegacyWLS",
	  function(.Object, observed, means, type, numObs, acov, fullWeight, thresholds) {
		.Object@observed <- observed
		.Object@means <- means
		.Object@type <- type
		.Object@numObs <- numObs
		.Object@acov <- acov
		.Object@fullWeight <- fullWeight
		.Object@thresholds <- thresholds
		.Object@name <- "data"
		.Object@.needSort <- FALSE
		.Object@.isSorted <- FALSE
		.Object@primaryKey <- as.character(NA)
		.Object@weight <- as.character(NA)
		.Object@frequency <- as.character(NA)
		return(.Object)
	}
)

# Due to confusion, acov is actually useWeight and fullWeight is asymCov
legacyMxData <- function(observed, type, means = NA, numObs = NA, acov=NA, fullWeight=NA, thresholds=NA) {
	if (length(means) == 1 && is.na(means)) means <- as.numeric(NA)
	if (length(acov) == 1 && is.na(acov)) acov <- matrix(as.numeric(NA))
	if (length(fullWeight) == 1 && is.na(fullWeight)) fullWeight <- matrix(as.numeric(NA))
	if (length(thresholds) == 1 && is.na(thresholds)) thresholds <- matrix(as.numeric(NA))
	if (missing(observed) || !is(observed, "MxOptionalDataFrameOrMatrix")) {
		stop("Observed argument is neither a data frame nor a matrix")
	}
	dups <- duplicated(colnames(observed))
	if (any(dups)) {
		stop(paste("Column names must be unique. Duplicated:",
			   omxQuotes(colnames(observed)[dups])))
	}
	if ((!is.vector(means) && !(prod(dim(means)) == length(means))) || !is.numeric(means)) {
		stop("Means argument must be of numeric vector type")
	}
	if (type != "raw" && is.na(numObs)) {
		stop("Number of observations must be specified for non-raw data, i.e., add numObs=XXX to mxData()")
	}
	if (type == "acov") {
		verifyCovarianceMatrix(observed, strictPD=FALSE)
		verifyCovarianceMatrix(acov, nameMatrix="asymptotic", strictPD=FALSE)
		if(!single.na(fullWeight)){
			verifyCovarianceMatrix(fullWeight, nameMatrix="asymptotic", strictPD=FALSE)
      fullWeight <- solve(fullWeight)
		}
		if ( !single.na(thresholds) ) {
			verifyThresholdNames(thresholds, colnames(observed))
		}
	}

	lapply(dimnames(observed)[[2]], imxVerifyName, -1)
	if(is.matrix(means)){meanNames <- colnames(means)} else {meanNames <- names(means)}
	means <- as.matrix(means)
	dim(means) <- c(1, length(means))
	colnames(means) <- meanNames

	return(new("MxDataLegacyWLS", observed, means, type, as.numeric(numObs), acov, fullWeight,
		   thresholds))
}

tryCatch.W <- function(expr) {
	# see demo(error.catching)
	W <- NULL
	w.handler <- function(w) {
		W <<- c(W,w)
		invokeRestart("muffleWarning")
	}
	list(value = withCallingHandlers(tryCatch(expr), warning = w.handler),
	     warning = W)
}

#------------------------------------------------------------------------------
# Mike Hunter's wls compute function for continuous only variables

# x is the raw data
wlsContinuousOnlyHelper <- function(x, type="WLS"){
	mnames <- colnames(x)
	numRows <- nrow(x)
	numCols <- ncol(x)
	numColsStar <- numCols*(numCols+1)/2
	if(numRows-1 < numColsStar){
		stop(paste0('Too few rows (', numRows, ') for number of variables (', numCols, ').\nFor WLS, you need at least n*(n+1)/2 + 1 = ', numColsStar+1, ' rows.\nBetter start rubbing two pennies together.'))
	}

	if(type=="ULS") {
		useWeight <- diag(1, numColsStar)
	}

	x <- x - rep(colMeans(x), each=nrow(x))
	V <- cov(x)*(numRows-1)/numRows
	U <- matrix(0, nrow=numColsStar, ncol=numColsStar)

	# Now construct the U MATRIX, from the W ARRAY
	#  Step 1: Generate index matrix M
	row <- 1
	M <- matrix(0, nrow=numColsStar, ncol=2)
	for(j in 1:numCols){
		M[row:(row+numCols-j),] <- cbind(j:numCols, j)
		row <- row+numCols-j+1
	}

	if(type=="DLS" || type=="DWLS") {
		for(i in 1:numColsStar){
			U[i,i] <- 1/(sum((x[,M[i, 1]]**2) * (x[,M[i, 2]]**2)) / numRows - V[M[i, 1], M[i, 2]]**2)
		}
		useWeight <- U
	}

	#  Step 2: Create the U MATRIX
	for(j in 1:numColsStar){
		for(i in j:numColsStar){
			ind <- c(M[i,], M[j,])
			U[i,j] <- sum(x[,ind[1]] * x[,ind[2]] * x[,ind[3]] * x[,ind[4]]) / numRows - V[ind[1],ind[2]]*V[ind[3],ind[4]]
		}
	}
	U <- vech2full(vech(U))
	fullWeight <- chol2inv(chol(U))
	if(type=="WLS"){
		useWeight <- fullWeight
	}

	nv <- ncol(x)
	covNames <- outer(mnames[1:nv], mnames[1:nv], FUN=paste, sep='_')
	diag(covNames) <- paste0("var_", mnames[1:nv])
	vechs(covNames) <- paste0("poly_", vechs(covNames))
	n1 <- vech(covNames)
	dimnames(useWeight) <- list(n1,n1)
	dimnames(fullWeight) <- list(n1,n1)

	return(list(use=useWeight, full=fullWeight*numRows))
}




#------------------------------------------------------------------------------
# Ryne Estabrook's wls compute function for only only variables
# Modified by Mike Hunter to allow continuous and maybe joint.


threshLogLik <- function(thresh, rawData, return="individual", useMinusTwo=TRUE){
	# individual: returns -log likelihood for each category
	#	given particular threshold values
	#	to be used for jacobian
	# model: returns model -log likelihood
	dataTable <- table(rawData)
	thresh <- c(-Inf, thresh, Inf)
	minP   <- pnorm(thresh[1:length(dataTable)])
	maxP   <- pnorm(thresh[2:length(thresh)])
	cellP  <- (- 1 - useMinusTwo) * log(maxP - minP)
	if (return=="individual"){return(cellP)}
	if (return=="model"){return(sum(cellP*dataTable))}
	}

pcLogLik <- function(k, means, vars, thresh, rawData, return="individual", useMinusTwo=TRUE){
	# individual: returns -log likelihood for each category
	#	given particular threshold values
	#	to be used for jacobian
	# model: returns model -log likelihood
	if (ncol(rawData)!=2)stop("Raw data must contain two variables.")
	if (ncol(thresh)!=2)stop("Threshold matrix must contain two columns.")
	if (length(k)!=1)stop("Please provide a single correlation to be tested.")
	pcThresh  <- rbind(-Inf, thresh, Inf)
	pcThresh[is.na(pcThresh)] <- Inf

	# make the frequency counts
	# table() drops missing values
	dataTable <- table(rawData)
	# was 'dataTableTall'
	dtt <- data.frame(
		x=rep(1:dim(dataTable)[1], dim(dataTable)[2]),
		y=rep(1:dim(dataTable)[2], each=dim(dataTable)[1]),
		count=as.vector(dataTable),
		mLL=NA
		)
	dtt$xMin <- pcThresh[dtt$x,	1]
	dtt$xMax <- pcThresh[dtt$x + 1,1]
	dtt$yMin <- pcThresh[dtt$y,    2]
	dtt$yMax <- pcThresh[dtt$y + 1,2]

	# make correlation matrix for
	k <- max(min(k,.999),-.999)
	corMatrix <- matrix(c(1, k, k, 1), 2, 2)
	for (i in 1:dim(dtt)[1]){
		dtt$mLL[i] <- (- 1 - useMinusTwo) * log(mvtnorm::pmvnorm(
			lower=c(dtt$xMin[i], dtt$yMin[i]),
			upper=c(dtt$xMax[i], dtt$yMax[i]),
			mean=c(0, 0),
			corr=corMatrix
			))
		}

	if (return=="individual"){return(as.vector(dtt$mLL))}
	if (return=="model"){return(sum(dtt$count*dtt$mLL))}
	if (return=="table"){return(dtt)}
	}

rcLogLik <- function(k, means=NULL, vars=NULL, thresh=NULL, rawData, return="model", useMinusTwo=TRUE){
	if (ncol(rawData)!=2)stop("Raw data must contain exactly two variables.")
	if (length(k)!=1)stop("Please provide a single correlation to be tested.")

	if(is.null(means)){ means <- apply(rawData, 2, mean, na.rm=TRUE)}
	if(is.null(vars)){ vars <- apply(rawData, 2, var, na.rm=TRUE)}

	sigma <- matrix(c(vars[1], k, k, vars[2]), 2, 2)
	lik <- apply(rawData, 1, mvtnorm::dmvnorm, means, sigma)

	if (return=="model"){ return( (- 1 - useMinusTwo)*sum(log(lik), na.rm=TRUE) ) }
	if (return=="individual") { return( (-1-useMinusTwo)*log(lik) ) }
	}

psLogLik <- function(k, means, vars, thresh, rawData, return="model", useMinusTwo=TRUE, print.res=FALSE){
	if (ncol(rawData)!=2)stop("Raw data must contain two variables.")
	if (length(k)!=1)stop("Please provide a single correlation to be tested.")
	isOrd <- unlist(lapply(rawData, is.ordered))
	if (sum(isOrd)!=1)stop("Raw data must contain one ordinal variable and one numeric variable.")

	# prep the threshold matrix
	#pcThresh  <- rbind(-Inf, thresh, Inf)
	#pcThresh[is.na(pcThresh)] <- Inf

	#wideData <- rawData
	#wideData$min <- pcThresh[as.numeric(wideData[,isOrd])]
	#wideData$max <- pcThresh[as.numeric(wideData[,isOrd])+1]


	llC <- log(dnorm(rawData[,!isOrd], means[!isOrd], sqrt(vars[!isOrd])))
	#oMean <- (rawData[,!isOrd] - means[!isOrd]) * k / vars[!isOrd]
	#oVar <- vars[isOrd] - k*(1/vars[!isOrd])*k
	z <- ( rawData[,!isOrd] - means[!isOrd] ) / (vars[!isOrd])
	oMean <- k*z
	oVar <- max(c(vars[isOrd] - k*k/vars[!isOrd], 1e-10))
	cumProb <- sapply(thresh, pnorm, mean=oMean, sd=sqrt(oVar))
	cumProb <- matrix(cumProb, nrow=nrow(rawData), ncol=length(thresh))
	cumProb <- cbind(cumProb, 1)
	levProb <- cbind(cumProb[,1,drop=F], cumProb[,-1,drop=F] - cumProb[,-(length(thresh)+1),drop=F])
	sel <- unclass(rawData[,isOrd])

	llO <- rep(NA, length(llC))
	for (i in 1:(length(thresh)+1)){
		llO[sel %in% i] <- levProb[sel %in% i, i]
	}
	llO <- log(llO)

	if(return=="model"){
		if(print.res) {
			print(paste('k =', k))
			print(paste('-2LL =', (- 1 - useMinusTwo) * sum(llC+llO, na.rm=TRUE)))
		}
		return((- 1 - useMinusTwo) * sum(llC+llO, na.rm=TRUE))
	} else if(return=="individual"){
		return((- 1 - useMinusTwo) * (llC+llO))
	}
	}

normLogLik <- function(pars, rawData, return="model", useMinusTwo=TRUE){
	#ret <- (- 1 - useMinusTwo) * log(dnorm(rawData, pars[1], sqrt(pars[2])))
	ret <- (- 1 - useMinusTwo) * log( 1/(sqrt(2*pi*abs(pars[2]))) * exp(-(rawData-pars[1])^2/(2*abs(pars[2]))))
	if(return=="individual"){
		return(ret)
	}
	if(return=="model"){
		return( sum(ret, na.rm=TRUE) )
	}
}

normLogLikGrad <- function(pars, rawData, return="model", useMinusTwo=TRUE){
	ret <- matrix(NA, nrow=length(rawData), ncol=2)
	ret[,1] <- (rawData - pars[1])/pars[2]
	ret[,2] <- (rawData - pars[1])^2/(2*pars[2]^2) - 1/(2*pars[2])
	ret <- (-1 - useMinusTwo)*ret
	if(return=="individual"){
		return(ret)
	}
	if(return=="model"){
		return( apply(ret, 2, sum) )
	}
}
# Note for the multivariate case
# m = mean parameter vector (not sample mean)
# L = log likelihood
# S = variance parameter matrix
# Sinv = solve(S)
# y = raw data vector for a single row
# r = residual = y - m
#  dL/dm = Sinv %*% (y - m)
#  dL/dS = -0.5*( Sinv - Sinv %*% r %*% t(r) %*% Sinv)


normLogLikHess <- function(pars, rawData, return="model", useMinusTwo=TRUE){
	ret <- matrix(NA, nrow=length(rawData), ncol=2)
	ret[,1] <- (rawData-1)/pars[2]
	ret[,2] <- 1/(2*pars[2]^2) - (rawData-pars[1])^2/(pars[2])^3
	ret <- (-1 - useMinusTwo)*ret
	if(return=="individual"){
		return(ret)
	}
	if(return=="model"){
		return( apply(ret, 2, sum, na.rm=TRUE) )
	}
}
# Note for the multivariate case
# d2L/dm2 = -1*Sinv
# d2L/dS2 = ...
# for 2x2 the Hessian of
# S = a b
#     b c
# is
# 1/(det(S))^2 *
# c^2
# -2*b*c    2*(b^2 + a*c)
# b^2       -2*a*b           a^2
#
# D <- matrix(c(1,0,0,0,0,1,1,0,0,0,0,1), 4, 3) #duplication matrix of order 2
# Sinv <- solve(S)
# d2L/dS2 = -0.5 * t(D) %*% ( kronecker(Sinv, Sinv) ) %*% D
# d2L/dSdm = d2L/dmdS = 0
# This is from Abadir and Magnus (2005, p. 390).
#


rc3LogLik <- function(k, means=NULL, vars=NULL, thresh=NULL, rawData, return="model", useMinusTwo=TRUE){
	if (ncol(rawData)!=2)stop("Raw data must contain exactly two variables.")
	if (length(k)!=3)stop("Please provide a variance, a covariance, and another variance to be tested.")

	if(is.null(means)){ means <- apply(rawData, 2, mean, na.rm=TRUE)}

	sigma <- matrix(c(k[1], k[2], k[2], k[3]), 2, 2)
	lik <- (-1-useMinusTwo)*log(apply(rawData, 1, mvtnorm::dmvnorm, means, sigma))

	if (return=="model"){ return(sum(lik)) }
	if (return=="individual") { return(lik) }
}

rc3Hess <- function(k, means=NULL, vars=NULL, thresh=NULL, rawData, return="model", useMinusTwo=TRUE){
	if (ncol(rawData)!=2)stop("Raw data must contain exactly two variables.")
	if (length(k)!=3)stop("Please provide a variance, a covariance, and another variance to be tested.")

	if(is.null(means)){ means <- apply(rawData, 2, mean, na.rm=TRUE)}

	S <- matrix(c(k[1], k[2], k[2], k[3]), 2, 2)
	D <- matrix(c(1,0,0,0,0,1,1,0,0,0,0,1), 4, 3) #duplication matrix of order 2
	Sinv <- solve2x2(S) #matrix(c(S[2,2], -S[1,2], -S[2,1], S[1,1]), 2, 2)/(S[1,1]*S[2,2] - S[1,2]*S[2,1])
	#Sinv <- solve(S)
	AnalyticCovHessian <- nrow(rawData) * (-1-useMinusTwo) * -0.5 * t(D) %*% ( kronecker(Sinv, Sinv) ) %*% D
	return(AnalyticCovHessian)
}
# Note: 3000x faster (3350x in simulation) than numerical Hessian from numDeriv::hessian of rc3LogLik
# 2000x faster when solve(S) is used instead of solve2x2

indexCov4to2 <- function(i, j, k, l, nvar){
	a <- indexCov2to1(i, j, nvar)
	b <- indexCov2to1(k, l, nvar)
	#indexCov2to1(a, b, nvar*(nvar+1)/2)
	return( c(a, b) ) #return upper triangle element
}

indexCov2to1 <- function(i, j, nvar){
	if(i < j) {stop("Element should be in lower triangle: column j <= row i")}
	a <- i
	b <- j
	return( a + nvar*(b-1) - sum((b-1):0) )
}

solve2x2 <- function(x){
	Xinv <- matrix(c(x[2,2], -x[1,2], -x[2,1], x[1,1]), 2, 2)/(x[1,1]*x[2,2] - x[1,2]*x[2,1])
	return(Xinv)
}

univariateThresholdStatisticsHelper <- function(od, data, nvar, n, ntvar, useMinusTwo){
	### univariate thresholds
	# prep objects
	nlevel <- unlist(lapply(od, nlevels))
	counts <- lapply(od, table)
	thresh <- matrix(NA, ifelse(nvar > 0, max(nlevel)-1, 0), nvar)
	threshHess <- list(NULL)
	threshWarn <- rep(0, nvar)
	if(nvar > 0) {threshJac <- list(NULL)} else threshJac <- NULL

	# get the thresholds, their hessians & their jacobians
	if(nvar > 0){
		for (i in 1:nvar){
			a <- proc.time()
			# threshold & jacobian
			tab <- table(od[,i])
			if(any(tab %in% 0)){
				msg <- paste0("Variable ", omxQuotes(names(od)[i]), " has a zero frequency category ", omxQuotes(names(tab)[tab %in% 0]), ".\nEliminate this level in your mxFactor() or combine categories in some other way.\nDo not pass go. Do not collect $200.")
				stop(msg, call.=FALSE)
			}
			startVals <- qnorm(cumsum(tab)/sum(!is.na(od[,i])))
			if (length(startVals)>2){
				uni <- optim(startVals[1:(length(startVals) - 1)],
					threshLogLik, return="model", rawData=od[,i], useMinusTwo=useMinusTwo, hessian=TRUE, method="BFGS")
			} else {
				result <- tryCatch.W(optimize(threshLogLik, lower=-6.28, upper=6.28,
							     return="model", rawData=od[,i]))
				threshWarn[i] <- length(result$warning)
				tHold <- result$value
				hHold <- numDeriv::hessian(threshLogLik, x=tHold$minimum,
					return="model", rawData=od[,i])
				uni <- list(par=tHold$minimum, hessian=hHold)
			}
			# assign thresholds
			thresh[1:(nlevel[i] - 1),i] <- uni$par
			# assign hessians
			threshHess[[i]] <- uni$hessian
			# get jacobian
			jac <- numDeriv::jacobian(func=threshLogLik, x=uni$par, rawData=od[,i])
			# assign jacobian
			threshJac[[i]] <- jac[unclass(od[,i]),]
			proc.time() - a
			}
		threshJac <- matrix(unlist(threshJac), nrow=n)
	}
	names(threshHess) <- names(od)
	colnames(thresh)  <- names(od)
	return(list(thresh, threshHess, threshJac, threshWarn))
}

univariateMeanVarianceStatisticsHelper <- function(ntvar, n, ords, data, useMinusTwo){
	### put the means in!

	### Use normLogLik function to get ML estimates of univariate
	# means and variances.
	# And use optim to get Jacobians and Hessians of these ML estimates.
	# Populate correct entries of relevant matrices to be used later.
	# In particular, the pcVars and pcMeans in the bivariate for loops.
	startEst <- numeric(2)
	meanEst <- numeric(ntvar)
	varEst <- numeric(ntvar)
	meanHess <- numeric(ntvar)
	meanJac <- matrix(NA, nrow=n, ncol=ntvar)
	varHess <- numeric(ntvar)
	varJac <- matrix(NA, nrow=n, ncol=ntvar)
	for(i in 1:ntvar){
		if( !ords[i] ){
			startEst[1] <- mean(data[,i], na.rm=TRUE)
			startEst[2] <- var(data[,i], na.rm=TRUE)
			univEst <- optim(par=startEst, fn=normLogLik, rawData=data[,i],
				return="model", useMinusTwo=useMinusTwo,
				method="BFGS", gr=normLogLikGrad, hessian=FALSE)
			# Re-set variance to be positive, if needed.
			if(univEst$par[2] < 0) univEst$par[2] <- -univEst$par[2]
			# N.B. The normal LL function takes the abs() of the variance, so sign flips are possible.
			univHess <- normLogLikHess(pars=univEst$par, rawData=data[,i], return="model", useMinusTwo=useMinusTwo)
			meanEst[i] <- univEst$par[1]
			varEst[i] <- univEst$par[2]
			meanHess[i] <- univHess[1]
			varHess[i] <- univHess[2] #Note: off diagonal elements are analytically exactly zero and are thus discarded.
			univJac <- normLogLikGrad( pars=univEst$par, rawData=data[,i],
					return="individual", useMinusTwo=useMinusTwo) # First column is mean, second is variance
			meanJac[,i] <- univJac[,1]
			varJac[,i] <- univJac[,2]
		} else{
			meanEst[i] <- 0
			varEst[i] <- 1 # Explicitly set ordinal mean and variance to 0 and 1
			meanHess[i] <- 0 #???
			varHess[i] <- 0
			meanJac[,i] <- 0 #???
			varJac[,i] <- rep(0, n)
		}
	}
	return(list(meanEst, varEst, meanHess, varHess, meanJac, varJac))
}

# mxDataWLS itself is deprecated
# useMinusTwo parameter is deprecated
mxDataWLS <- function(data, type="WLS", useMinusTwo=TRUE, returnInverted=TRUE, fullWeight=TRUE,
		      suppressWarnings = TRUE, allContinuousMethod=c("cumulants", "marginals"),
		      silent=!interactive())
{
	allContinuousMethod <- match.arg(allContinuousMethod)
	# version 0.2
	#
	#available types
	wlsTypes <- c("ULS", "DLS", "DWLS", "WLS", "XLS")

	# error checking
	if (!is.data.frame(data)){
		stop("'data' must be a data frame.")
	}
	for (cn in colnames(data)) imxVerifyName(cn, 2)
	# check type
	if (!(type %in% wlsTypes)){
		stop(
			paste("Type must be one of '",
				paste(wlsTypes[-length(wlsTypes)], collapse="', '"),
				"', or '", wlsTypes[length(wlsTypes)], "'.", sep="")
			)
	}
	allContinuousMethod <- tolower(allContinuousMethod)
	if (!(allContinuousMethod %in% c('cumulant', 'cumulants', 'marginal', 'marginals'))){
		stop(
			paste("'allContinuousMethod' must be one of ",
				"'cumulants' or 'marginals'.\nBoth plural and singular forms are allowed.", sep="")
			)
	}
	# standardize spelling
	if (allContinuousMethod == 'cumulant') allContinuousMethod <- 'cumulants'
	if (allContinuousMethod == 'marginal') allContinuousMethod <- 'marginals'

	# select ordinal variables
	ords <- unlist(lapply(data, is.ordered))
	badFactors <- !ords & unlist(lapply(data, is.factor))
	if (any(badFactors)) {
		stop(paste("Factors", omxQuotes(colnames(data)[badFactors]),
			   "must be ordered and are not"))
	}

	nvar <- sum(ords)
	ntvar <- ncol(data)
	n <- dim(data)[1]


	msg <- paste("Calculating asymptotic summary statistics for",
		ntvar - nvar, "continuous and", nvar, "ordinal variables ...")
	msgLen <- nchar(msg)
	#message(msg)
	if (!silent) imxReportProgress(msg, 0)

	# if no ordinal variables, use continuous-only helper
	if(nvar == 0 && allContinuousMethod %in% c("cumulant", "cumulants")){
		if (!silent) imxReportProgress("", msgLen)
		if (any(is.na(data))) {
			stop(paste("All continuous data with missingness cannot be",
				   "handled in the WLS framework.",
				   "Use na.omit(yourDataFrame) to remove rows with missing values",
				   "or use maximum likelihood instead"))
		}
		wls <- wlsContinuousOnlyHelper(data, type)
		retVal <- legacyMxData(cov(data), type="acov", acov=wls$use, fullWeight=wls$full, numObs=n)
		return(wls.permute(retVal))
	}

	# separate ordinal and continuous variables (temporary)
	od <- data[,ords,drop=FALSE]
	cd <- data[,!ords,drop=FALSE]

	# thresholds, their hessians & their jacobians
	utsList <- univariateThresholdStatisticsHelper(od, data, nvar, n, ntvar, useMinusTwo)
	thresh <- utsList[[1]]
	threshHess <- utsList[[2]]
	threshJac <- utsList[[3]]
	threshWarn <- utsList[[4]]

	# means and variances with their hessians & their jacobians
	umvsList <- univariateMeanVarianceStatisticsHelper(ntvar, n, ords, data, useMinusTwo)
	meanEst <- umvsList[[1]]
	varEst <- umvsList[[2]]
	meanHess <- umvsList[[3]]
	varHess <- umvsList[[4]]
	meanJac <- umvsList[[5]]
	varJac <- umvsList[[6]]

	### bivariate polychorics
	pcMatrix <- matrix(NA, ntvar, ntvar)
	diag(pcMatrix) <- 1
	pcJac    <- matrix(NA, nrow=n, ncol=ntvar*(ntvar+1)/2)
	hessHold <- numeric(ntvar*(ntvar+1)/2)
	hessWarn <- rep(0, length(hessHold))
	parName  <- NULL
	r3hess <- array(NA, dim=c(3, 3, ntvar*(ntvar+1)/2))
	covHess <- matrix(0, nrow=ntvar*(ntvar+1)/2, ncol=ntvar*(ntvar+1)/2)
	# det of correlation matrix = 1 - r^2
	# sqrt of det is sqrt(1 - r^2)
	# inverse of correlation matrix is (1-r^2) * [ 1 & -r // -r & 1]
	#   - diagonal elements are 1/(1-r^2)
	#   - off-diagonal elements are -r/(1-r^2)
	# you don't need any of this information now, but may later
	for (j in 1:ntvar){
		for (i in j:ntvar){
			pcData <- data[,c(i,j)]
			ordPair <- (ords[i] + ords[j])
			if( ordPair == 0 ) { # Continuous variables
				logLikFUN <- rcLogLik
				pcThresh <- NULL
			} else if( ordPair == 1 ) { # Joint variables
				logLikFUN <- psLogLik
				# Find correct ordinal column
				tcols <- as.numeric(na.omit(match(names(ords)[c(i,j)], colnames(thresh))))
				pcThresh <- matrix(thresh[,tcols], ncol=1)
				pcThresh <- pcThresh[!is.na(pcThresh),]
			} else if( ordPair == 2 ) { # Ordinal variables
				logLikFUN <- pcLogLik
				# Find correct ordinal column
				tcols <- as.numeric(na.omit(match(names(ords)[c(i,j)], colnames(thresh))))
				pcThresh <- matrix(thresh[,tcols], ncol=2)
			} else stop(paste("Cannot determine variable type for columns", i, "and" , j))
			pcMeans <- c(meanEst[i], meanEst[j])
			pcVars <- c(varEst[i], varEst[j])
			pcBounds <- c(-1, 1) * (sqrt(prod(pcVars)) - 1e-6)
			if ( (i==j) ){
				pcMatrix[i,j] <- pcVars[1]
				pcJac[,indexCov2to1(i,j,ntvar)] <- varJac[,i]
				hessHold[indexCov2to1(i, j,ntvar)] <- varHess[i]
				r3hess[,,indexCov2to1(i, j, ntvar)] <- diag(rep(1, 3))
				covHess[matrix(indexCov4to2(i, j, i, j, ntvar), ncol=2)] <- varHess[i]
				parName <- c(parName, paste("var", names(pcData)[1], sep="_"))
			} else {
				# parameter name
				parName <- c(parName, paste("poly", names(pcData)[1], names(pcData)[2], sep="_"))
				# get polychoric
				optResult <- tryCatch.W(optimize(logLikFUN, lower=pcBounds[1], upper=pcBounds[2],
							means=pcMeans, vars=pcVars, thresh=pcThresh, return="model", rawData=pcData, useMinusTwo=useMinusTwo))
				pc <- optResult$value
				hessWarn[indexCov2to1(i, j, ntvar)] <- length(optResult$warning)
				# assign polychoric
				pcMatrix[j, i] <- pc$minimum
				pcMatrix[i, j] <- pc$minimum
				# get and assign hessian
				# Stop Hessian from walking outside of bounds
				small <- 0.1
				step <- pc$minimum + c(-1, 1)*.1
				if(pcBounds[1] > step[1] || pcBounds[2] < step[2]){
					# if we're within 0.1 of the bound then only walk halfway to it.
					small <- min(abs(pcBounds - pc$minimum))/2
				}
				# Compute actual Hessian
				hessHold[indexCov2to1(i, j, ntvar)] <- numDeriv::hessian(logLikFUN, x=pc$minimum,
						means=pcMeans, vars=pcVars, thresh=pcThresh, return="model", rawData=pcData, useMinusTwo=useMinusTwo, method.args=list(d=small))
#				if(ordPair==0){ #Continuous variables
#					r3hess[,,indexCov2to1(i, j, ntvar)] <- numDeriv::hessian(rc3LogLik, x=c(pcVars[1], pc$minimum, pcVars[2]),
#						means=meanEst[c(i, j)], thresh=pcThresh, return="model", rawData=pcData, useMinusTwo=useMinusTwo)
#					r3hess[,,indexCov2to1(i, j, ntvar)] <- cov2cor(r3hess[,,indexCov2to1(i, j, ntvar)])
#					covHess[matrix(indexCov4to2(i, i, i, j, ntvar), ncol=2)] <- r3hess[1,2,indexCov2to1(i, j, ntvar)]*sqrt(varHess[i]*hessHold[indexCov2to1(i, j, ntvar)])
#					#covHess[matrix(indexCov4to2(i, i, j, j, ntvar), ncol=2)] <- r3hess[1,3,indexCov2to1(i, j, ntvar)]*sqrt(varHess[i]*varHess[j])
#					covHess[matrix(indexCov4to2(i, j, j, j, ntvar), ncol=2)] <- r3hess[2,3,indexCov2to1(i, j, ntvar)]*sqrt(hessHold[indexCov2to1(i, j, ntvar)]*varHess[j])
#				}
				#pcHess[i, j]   <- pcHess[j, i]
				# get jacobian
				if( ordPair == 0 ) { # Continuous variables
					assignJac <- matrix(numDeriv::jacobian(func=logLikFUN, x=pc$minimum, means=pcMeans, vars=pcVars, thresh=pcThresh,
						rawData=pcData, return="individual", useMinusTwo=useMinusTwo),
						nrow=n,
						ncol=1)
				}
				else if( ordPair == 1 ) { #Joint variables
					assignJac <- matrix(numDeriv::jacobian(func=logLikFUN, method.args=list(eps=1e-4, d=1e-4, zero.tol=sqrt(.Machine$double.eps/7e-7), r=4, v=2, show.details=FALSE), x=pc$minimum, means=pcMeans, vars=pcVars, thresh=pcThresh,
						rawData=pcData, return="individual", useMinusTwo=useMinusTwo),
						nrow=n,
						ncol=1)
					#stop("Jacobian for joint ordinal and continuous variables is not yet implemented.")
				} else { # Ordinal variables
					localJac <- matrix(numDeriv::jacobian(func=logLikFUN, x=pc$minimum, vars=pcVars, thresh=pcThresh,
						rawData=pcData, return="individual", useMinusTwo=useMinusTwo),
						nrow=nlevels(pcData[,1]),
						ncol=nlevels(pcData[,2]))
					# For all ordinal data this is the n1 x n2 table of the 1x1 gradients in each combination
					#  of levels of the ordered variables.
					# Then the following loop turns the matrix into a vector corresponding to the rows of data.
					# The continuous data assignJac already returns the vector of 1x1 gradients
					#  (correponding to data rows).
					# assign jacobian
					select <- matrix(c(unclass(pcData[,1]), unclass(pcData[, 2])), ncol=2)
					assignJac <- localJac[select]
					# N.B. when either variable is missing, this returns NA for that row.
					}
					pcJac[,indexCov2to1(i,j,ntvar)] <- assignJac
				}
			}
		}
	# nparam <- nvar*(nvar+1)/2 + length(threshHess) #N.B. not used anywhere


	covHess[lower.tri(covHess)] <- t(covHess)[lower.tri(covHess)]
	diag(covHess) <- hessHold
	colnames(covHess) <- parName
	rownames(covHess) <- parName

	### put names on everything

	# put names on the polychorics
	dimnames(pcMatrix) <- list(names(data), names(data))

	# put names on the jacobian
	colnames(pcJac) <- parName

	# put names on the hessian
	names(hessHold) <- parName

	# Now doing something about the means!
	# To replicate old behavior set,
	# The following two lines should be deleted.
	#meanJac <- NULL
	#meanHess <- NULL
	# even though these might not be NULL and have been processed earlier.
	fullJac  <- cbind(pcJac, meanJac, threshJac)
	if( nvar > 0 ){
		fullHess <- as.matrix(Matrix::bdiag(diag(c(hessHold, meanHess)), Matrix::bdiag(threshHess)))
	} else {
		fullHess <- diag(c(hessHold, meanHess))
	}

	#TODO Figure out why certain elements of fullJac end up missing when the data are missing.
	quad <- (n-1)*var(fullJac, use="pairwise.complete.obs") #bc colMeans all zero == t(fullJac) %*% fullJac
	quad[is.na(quad)] <- 0
	sel  <- diag(quad)!=0
	iqj  <- matrix(0, dim(quad)[1], dim(quad)[2])
	attIqj <- try(solve(quad[sel, sel]))
  # condition has length > 1 error
	if(inherits(attIqj, "try-error" )){
		iqj[sel,sel] <- MASS::ginv(quad[sel, sel])
		warning('First derivative matrix was not intertible. Used pseudo-inverse instead.')
	} else {
		iqj[sel,sel] <- attIqj
	}

	# make the weight matrix!!!
	wls <- fullHess %*% iqj %*% fullHess
	fullNames <- c(parName, colnames(data))
	if(nvar > 0){
		fullNames <- c(fullNames,
				unlist(mapply(function(vn,hess) paste0(vn,'t',1:ncol(hess)),
					names(threshHess),
					threshHess)))
	}
	dimnames(wls) <- list(fullNames, fullNames)
	fullWarn <- c(hessWarn, threshWarn)
	names(fullWarn) <- c(parName, colnames(data)[ords])
	if (!suppressWarnings && any(fullWarn > 0)) {
		warning(paste("Encountered warnings during optimization of",
			      omxQuotes(fullWarn[fullWarn > 0])))
	}

	dls <- diag(diag(wls))
	dimnames(dls) <- dimnames(wls)
	uls <- (dls>0)*1
	dimnames(uls) <- dimnames(wls)

	# try the weird non-hao version
	xls <- quad
	dimnames(xls) <- dimnames(wls)

	dummy <- diag(1, nrow=nrow(pcMatrix))
	dimnames(dummy) <- dimnames(pcMatrix)
	if(nvar > 0){
		retVal <- legacyMxData(dummy, type="acov", numObs=n,
			acov=diag(1), fullWeight=NA, thresholds=thresh)
	} else {
		retVal <- legacyMxData(dummy, type="acov", numObs=n,
			acov=diag(1), fullWeight=NA, thresholds=NA)
	}
	retVal@observed <- pcMatrix
	if(fullWeight==TRUE){
		retVal@fullWeight <- wls
	}
	retVal@means <- matrix(meanEst, nrow=1)
	dimnames(retVal@means) <- list(NULL, names(data))
	if (type=="ULS"){
		retVal@acov <- uls
		}
	if (type=="DLS" || type=="DWLS"){
		retVal@acov <- dls / n
		}
	if (type=="WLS"){
		retVal@acov <- wls / n
		}
	if (type=="XLS"){
		retVal@acov <- xls
		}
	if (!silent) imxReportProgress("", msgLen)
	return(wls.permute(retVal))
}

wls.permute <- function(mxd) {
	acov <- mxd@acov
	perm <- match(names(.mxDataAsVector(mxd)), colnames(acov))
	mxd@acov <- acov[perm,perm]
	fw <- mxd@fullWeight
	if (!is.null(fw)) {
		mxd@fullWeight <- fw[perm,perm]
	}
	mxd
}

.mxDataAsVector <- function(mxd) {
	mnames <- colnames(mxd@observed)
	ordInd <- c()
	if (!is.null(mxd@thresholds)) {
		ordInd <- match(colnames(mxd@thresholds), mnames)
		dth <- !is.na(mxd@thresholds)
	}
	v <- c()
	vn <- c()
	for (vx in 1:length(mnames)) {
		tcol <- which(vx == ordInd)
		if (length(tcol) == 0) {
			if (!single.na(mxd@means)) {
				v <- c(v, mxd@means[vx])
				vn <- c(vn, mnames[vx])
			}
		} else {
			tcount <- sum(dth[,tcol])
			v <- c(v, mxd@thresholds[1:tcount,tcol])
			vn <- c(vn, paste0(mnames[vx], 't', 1:tcount))
		}
	}
	for (vx in 1:length(mnames)) {
		if (any(vx == ordInd)) next
		v <- c(v, mxd@observed[vx,vx])
		vn <- c(vn, paste0('var_', mnames[vx]))
	}
	v <- c(v, vechs(mxd@observed))
	nv <- length(mnames)
	vn <- c(vn, paste0('poly_', vechs(outer(mnames[1:nv], mnames[1:nv], FUN=paste, sep='_'))))
	names(v) <- vn
	v
}


##' Estimate summary statistics used by the WLS fit function
##'
##' The summary statistics are returned in the observedStats slot of
##' the MxData object.
##'
##' @param mxd an MxData object containing raw data
##' @param type the type of WLS weight matrix
##' @param allContinuousMethod which method to use when all indicators are continuous
##' @param ...  Not used.  Forces remaining arguments to be specified by name.
##' @param exogenous names variables to be modelled as exogenous
##' @param fullWeight whether to produce a fullWeight matrix
##' @param returnModel whether to return the whole mxModel (TRUE) or just the mxData (FALSE)
##' @param silent logical. Whether to print status to terminal.
##' @seealso
##' \link{mxFitFunctionWLS}
##' @examples
##' omxAugmentDataWithWLSSummary(mxData(Bollen[,1:8], 'raw'))
omxAugmentDataWithWLSSummary <- function(mxd, type=c('WLS','DWLS','ULS'),
			      allContinuousMethod=c("cumulants", "marginals"),
			      ..., exogenous=c(), fullWeight=TRUE, returnModel=FALSE,
			      silent=TRUE)
{
	type <- match.arg(type)
	allContinuousMethod <- match.arg(allContinuousMethod)
  prohibitDotdotdot(list(...))
	if (mxd@type != 'raw') stop("Data must contain a raw data frame")
	data <- mxd@observed
	notFound <- is.na(match(exogenous, colnames(data)))
	if (any(notFound)) {
		stop(paste("Cannot find exogenous", omxQuotes(exogenous), "in data"))
	}
	nc <- ncol(data)
	names <- setdiff(colnames(data), exogenous)
	weight <- mxd@weight
	if (!is.na(weight)) {
		nc <- nc - 1
		names <- names[-match(weight, colnames(data))]
	}
	frequency <- mxd@frequency
	if (!is.na(frequency)) {
		nc <- nc - 1
		names <- names[-match(frequency, colnames(data))]
	}
	numManifests <- nc - length(exogenous)
	fake <- mxModel("fake",
		mxd,
		mxMatrix("Full", nc, nc, dimnames=list(c(names,exogenous),
			c(names,exogenous)), name="S"),
		mxMatrix("Full", nc, nc, name="A"),
		mxMatrix("Full", numManifests, nc,
			dimnames=list(names,c(names,exogenous)), name="F"),
		mxExpectationRAM(),
		mxFitFunctionWLS(type, allContinuousMethod, fullWeight),
		mxComputeOnce('fitfunction', 'fit'))

	if (length(exogenous)) fake$A$values[1:numManifests,(numManifests+1):nc] <- 1
	fake$S$values[1:numManifests,1:numManifests] <- diag(numManifests)
	fake$F$values[1:numManifests,1:numManifests] <- diag(numManifests)

	ords <- unlist(lapply(data, is.ordered)) & colnames(data) %in% names

	if (any(ords) || allContinuousMethod != 'cumulants') {
		fake <- mxModel(fake,
			mxMatrix(values=0, nrow=1, ncol=nc,
				dimnames=list(c(), c(names,exogenous)), name="M"))
		if (length(exogenous)) {
			fake$M$labels[1,(numManifests+1):ncol(fake$M)] <-
				paste0('data.',exogenous)
		}
		fake$expectation$M <- "M"
	}

	if (any(ords)) {
		nthr <- sapply(data[,ords], nlevels) - 1L
		tmpThr <- matrix(NA, ncol=sum(ords), nrow=max(nthr))
		colnames(tmpThr) <- colnames(data)[ords]
		for (cx in 1:ncol(tmpThr)) {
			tmpThr[1:nthr[cx],cx] <- seq(-1,1,length.out=nthr[cx])
		}
		fake <- mxModel(fake, mxMatrix(values=tmpThr, name="thresh"))
		fake$expectation$thresholds <- "thresh"
	}
	fake <- mxRun(fake, silent=silent)
	if (returnModel) return(fake)
	fake$data
}

dataIsRawish <- function(mxd) mxd@type %in% c('none', 'raw', 'acov')