1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
|
#
# Copyright 2007-2021 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#------------------------------------------------------------------------------
setClass(Class = "MxDataLegacyWLS",
contains = "MxDataStatic",
representation = representation(
acov = "matrix",
fullWeight = "matrix",
thresholds = "matrix"))
setMethod("initialize", "MxDataLegacyWLS",
function(.Object, observed, means, type, numObs, acov, fullWeight, thresholds) {
.Object@observed <- observed
.Object@means <- means
.Object@type <- type
.Object@numObs <- numObs
.Object@acov <- acov
.Object@fullWeight <- fullWeight
.Object@thresholds <- thresholds
.Object@name <- "data"
.Object@.needSort <- FALSE
.Object@.isSorted <- FALSE
.Object@primaryKey <- as.character(NA)
.Object@weight <- as.character(NA)
.Object@frequency <- as.character(NA)
return(.Object)
}
)
# Due to confusion, acov is actually useWeight and fullWeight is asymCov
legacyMxData <- function(observed, type, means = NA, numObs = NA, acov=NA, fullWeight=NA, thresholds=NA) {
if (length(means) == 1 && is.na(means)) means <- as.numeric(NA)
if (length(acov) == 1 && is.na(acov)) acov <- matrix(as.numeric(NA))
if (length(fullWeight) == 1 && is.na(fullWeight)) fullWeight <- matrix(as.numeric(NA))
if (length(thresholds) == 1 && is.na(thresholds)) thresholds <- matrix(as.numeric(NA))
if (missing(observed) || !is(observed, "MxOptionalDataFrameOrMatrix")) {
stop("Observed argument is neither a data frame nor a matrix")
}
dups <- duplicated(colnames(observed))
if (any(dups)) {
stop(paste("Column names must be unique. Duplicated:",
omxQuotes(colnames(observed)[dups])))
}
if ((!is.vector(means) && !(prod(dim(means)) == length(means))) || !is.numeric(means)) {
stop("Means argument must be of numeric vector type")
}
if (type != "raw" && is.na(numObs)) {
stop("Number of observations must be specified for non-raw data, i.e., add numObs=XXX to mxData()")
}
if (type == "acov") {
verifyCovarianceMatrix(observed, strictPD=FALSE)
verifyCovarianceMatrix(acov, nameMatrix="asymptotic", strictPD=FALSE)
if(!single.na(fullWeight)){
verifyCovarianceMatrix(fullWeight, nameMatrix="asymptotic", strictPD=FALSE)
fullWeight <- solve(fullWeight)
}
if ( !single.na(thresholds) ) {
verifyThresholdNames(thresholds, colnames(observed))
}
}
lapply(dimnames(observed)[[2]], imxVerifyName, -1)
if(is.matrix(means)){meanNames <- colnames(means)} else {meanNames <- names(means)}
means <- as.matrix(means)
dim(means) <- c(1, length(means))
colnames(means) <- meanNames
return(new("MxDataLegacyWLS", observed, means, type, as.numeric(numObs), acov, fullWeight,
thresholds))
}
tryCatch.W <- function(expr) {
# see demo(error.catching)
W <- NULL
w.handler <- function(w) {
W <<- c(W,w)
invokeRestart("muffleWarning")
}
list(value = withCallingHandlers(tryCatch(expr), warning = w.handler),
warning = W)
}
#------------------------------------------------------------------------------
# Mike Hunter's wls compute function for continuous only variables
# x is the raw data
wlsContinuousOnlyHelper <- function(x, type="WLS"){
mnames <- colnames(x)
numRows <- nrow(x)
numCols <- ncol(x)
numColsStar <- numCols*(numCols+1)/2
if(numRows-1 < numColsStar){
stop(paste0('Too few rows (', numRows, ') for number of variables (', numCols, ').\nFor WLS, you need at least n*(n+1)/2 + 1 = ', numColsStar+1, ' rows.\nBetter start rubbing two pennies together.'))
}
if(type=="ULS") {
useWeight <- diag(1, numColsStar)
}
x <- x - rep(colMeans(x), each=nrow(x))
V <- cov(x)*(numRows-1)/numRows
U <- matrix(0, nrow=numColsStar, ncol=numColsStar)
# Now construct the U MATRIX, from the W ARRAY
# Step 1: Generate index matrix M
row <- 1
M <- matrix(0, nrow=numColsStar, ncol=2)
for(j in 1:numCols){
M[row:(row+numCols-j),] <- cbind(j:numCols, j)
row <- row+numCols-j+1
}
if(type=="DLS" || type=="DWLS") {
for(i in 1:numColsStar){
U[i,i] <- 1/(sum((x[,M[i, 1]]**2) * (x[,M[i, 2]]**2)) / numRows - V[M[i, 1], M[i, 2]]**2)
}
useWeight <- U
}
# Step 2: Create the U MATRIX
for(j in 1:numColsStar){
for(i in j:numColsStar){
ind <- c(M[i,], M[j,])
U[i,j] <- sum(x[,ind[1]] * x[,ind[2]] * x[,ind[3]] * x[,ind[4]]) / numRows - V[ind[1],ind[2]]*V[ind[3],ind[4]]
}
}
U <- vech2full(vech(U))
fullWeight <- chol2inv(chol(U))
if(type=="WLS"){
useWeight <- fullWeight
}
nv <- ncol(x)
covNames <- outer(mnames[1:nv], mnames[1:nv], FUN=paste, sep='_')
diag(covNames) <- paste0("var_", mnames[1:nv])
vechs(covNames) <- paste0("poly_", vechs(covNames))
n1 <- vech(covNames)
dimnames(useWeight) <- list(n1,n1)
dimnames(fullWeight) <- list(n1,n1)
return(list(use=useWeight, full=fullWeight*numRows))
}
#------------------------------------------------------------------------------
# Ryne Estabrook's wls compute function for only only variables
# Modified by Mike Hunter to allow continuous and maybe joint.
threshLogLik <- function(thresh, rawData, return="individual", useMinusTwo=TRUE){
# individual: returns -log likelihood for each category
# given particular threshold values
# to be used for jacobian
# model: returns model -log likelihood
dataTable <- table(rawData)
thresh <- c(-Inf, thresh, Inf)
minP <- pnorm(thresh[1:length(dataTable)])
maxP <- pnorm(thresh[2:length(thresh)])
cellP <- (- 1 - useMinusTwo) * log(maxP - minP)
if (return=="individual"){return(cellP)}
if (return=="model"){return(sum(cellP*dataTable))}
}
pcLogLik <- function(k, means, vars, thresh, rawData, return="individual", useMinusTwo=TRUE){
# individual: returns -log likelihood for each category
# given particular threshold values
# to be used for jacobian
# model: returns model -log likelihood
if (ncol(rawData)!=2)stop("Raw data must contain two variables.")
if (ncol(thresh)!=2)stop("Threshold matrix must contain two columns.")
if (length(k)!=1)stop("Please provide a single correlation to be tested.")
pcThresh <- rbind(-Inf, thresh, Inf)
pcThresh[is.na(pcThresh)] <- Inf
# make the frequency counts
# table() drops missing values
dataTable <- table(rawData)
# was 'dataTableTall'
dtt <- data.frame(
x=rep(1:dim(dataTable)[1], dim(dataTable)[2]),
y=rep(1:dim(dataTable)[2], each=dim(dataTable)[1]),
count=as.vector(dataTable),
mLL=NA
)
dtt$xMin <- pcThresh[dtt$x, 1]
dtt$xMax <- pcThresh[dtt$x + 1,1]
dtt$yMin <- pcThresh[dtt$y, 2]
dtt$yMax <- pcThresh[dtt$y + 1,2]
# make correlation matrix for
k <- max(min(k,.999),-.999)
corMatrix <- matrix(c(1, k, k, 1), 2, 2)
for (i in 1:dim(dtt)[1]){
dtt$mLL[i] <- (- 1 - useMinusTwo) * log(mvtnorm::pmvnorm(
lower=c(dtt$xMin[i], dtt$yMin[i]),
upper=c(dtt$xMax[i], dtt$yMax[i]),
mean=c(0, 0),
corr=corMatrix
))
}
if (return=="individual"){return(as.vector(dtt$mLL))}
if (return=="model"){return(sum(dtt$count*dtt$mLL))}
if (return=="table"){return(dtt)}
}
rcLogLik <- function(k, means=NULL, vars=NULL, thresh=NULL, rawData, return="model", useMinusTwo=TRUE){
if (ncol(rawData)!=2)stop("Raw data must contain exactly two variables.")
if (length(k)!=1)stop("Please provide a single correlation to be tested.")
if(is.null(means)){ means <- apply(rawData, 2, mean, na.rm=TRUE)}
if(is.null(vars)){ vars <- apply(rawData, 2, var, na.rm=TRUE)}
sigma <- matrix(c(vars[1], k, k, vars[2]), 2, 2)
lik <- apply(rawData, 1, mvtnorm::dmvnorm, means, sigma)
if (return=="model"){ return( (- 1 - useMinusTwo)*sum(log(lik), na.rm=TRUE) ) }
if (return=="individual") { return( (-1-useMinusTwo)*log(lik) ) }
}
psLogLik <- function(k, means, vars, thresh, rawData, return="model", useMinusTwo=TRUE, print.res=FALSE){
if (ncol(rawData)!=2)stop("Raw data must contain two variables.")
if (length(k)!=1)stop("Please provide a single correlation to be tested.")
isOrd <- unlist(lapply(rawData, is.ordered))
if (sum(isOrd)!=1)stop("Raw data must contain one ordinal variable and one numeric variable.")
# prep the threshold matrix
#pcThresh <- rbind(-Inf, thresh, Inf)
#pcThresh[is.na(pcThresh)] <- Inf
#wideData <- rawData
#wideData$min <- pcThresh[as.numeric(wideData[,isOrd])]
#wideData$max <- pcThresh[as.numeric(wideData[,isOrd])+1]
llC <- log(dnorm(rawData[,!isOrd], means[!isOrd], sqrt(vars[!isOrd])))
#oMean <- (rawData[,!isOrd] - means[!isOrd]) * k / vars[!isOrd]
#oVar <- vars[isOrd] - k*(1/vars[!isOrd])*k
z <- ( rawData[,!isOrd] - means[!isOrd] ) / (vars[!isOrd])
oMean <- k*z
oVar <- max(c(vars[isOrd] - k*k/vars[!isOrd], 1e-10))
cumProb <- sapply(thresh, pnorm, mean=oMean, sd=sqrt(oVar))
cumProb <- matrix(cumProb, nrow=nrow(rawData), ncol=length(thresh))
cumProb <- cbind(cumProb, 1)
levProb <- cbind(cumProb[,1,drop=F], cumProb[,-1,drop=F] - cumProb[,-(length(thresh)+1),drop=F])
sel <- unclass(rawData[,isOrd])
llO <- rep(NA, length(llC))
for (i in 1:(length(thresh)+1)){
llO[sel %in% i] <- levProb[sel %in% i, i]
}
llO <- log(llO)
if(return=="model"){
if(print.res) {
print(paste('k =', k))
print(paste('-2LL =', (- 1 - useMinusTwo) * sum(llC+llO, na.rm=TRUE)))
}
return((- 1 - useMinusTwo) * sum(llC+llO, na.rm=TRUE))
} else if(return=="individual"){
return((- 1 - useMinusTwo) * (llC+llO))
}
}
normLogLik <- function(pars, rawData, return="model", useMinusTwo=TRUE){
#ret <- (- 1 - useMinusTwo) * log(dnorm(rawData, pars[1], sqrt(pars[2])))
ret <- (- 1 - useMinusTwo) * log( 1/(sqrt(2*pi*abs(pars[2]))) * exp(-(rawData-pars[1])^2/(2*abs(pars[2]))))
if(return=="individual"){
return(ret)
}
if(return=="model"){
return( sum(ret, na.rm=TRUE) )
}
}
normLogLikGrad <- function(pars, rawData, return="model", useMinusTwo=TRUE){
ret <- matrix(NA, nrow=length(rawData), ncol=2)
ret[,1] <- (rawData - pars[1])/pars[2]
ret[,2] <- (rawData - pars[1])^2/(2*pars[2]^2) - 1/(2*pars[2])
ret <- (-1 - useMinusTwo)*ret
if(return=="individual"){
return(ret)
}
if(return=="model"){
return( apply(ret, 2, sum) )
}
}
# Note for the multivariate case
# m = mean parameter vector (not sample mean)
# L = log likelihood
# S = variance parameter matrix
# Sinv = solve(S)
# y = raw data vector for a single row
# r = residual = y - m
# dL/dm = Sinv %*% (y - m)
# dL/dS = -0.5*( Sinv - Sinv %*% r %*% t(r) %*% Sinv)
normLogLikHess <- function(pars, rawData, return="model", useMinusTwo=TRUE){
ret <- matrix(NA, nrow=length(rawData), ncol=2)
ret[,1] <- (rawData-1)/pars[2]
ret[,2] <- 1/(2*pars[2]^2) - (rawData-pars[1])^2/(pars[2])^3
ret <- (-1 - useMinusTwo)*ret
if(return=="individual"){
return(ret)
}
if(return=="model"){
return( apply(ret, 2, sum, na.rm=TRUE) )
}
}
# Note for the multivariate case
# d2L/dm2 = -1*Sinv
# d2L/dS2 = ...
# for 2x2 the Hessian of
# S = a b
# b c
# is
# 1/(det(S))^2 *
# c^2
# -2*b*c 2*(b^2 + a*c)
# b^2 -2*a*b a^2
#
# D <- matrix(c(1,0,0,0,0,1,1,0,0,0,0,1), 4, 3) #duplication matrix of order 2
# Sinv <- solve(S)
# d2L/dS2 = -0.5 * t(D) %*% ( kronecker(Sinv, Sinv) ) %*% D
# d2L/dSdm = d2L/dmdS = 0
# This is from Abadir and Magnus (2005, p. 390).
#
rc3LogLik <- function(k, means=NULL, vars=NULL, thresh=NULL, rawData, return="model", useMinusTwo=TRUE){
if (ncol(rawData)!=2)stop("Raw data must contain exactly two variables.")
if (length(k)!=3)stop("Please provide a variance, a covariance, and another variance to be tested.")
if(is.null(means)){ means <- apply(rawData, 2, mean, na.rm=TRUE)}
sigma <- matrix(c(k[1], k[2], k[2], k[3]), 2, 2)
lik <- (-1-useMinusTwo)*log(apply(rawData, 1, mvtnorm::dmvnorm, means, sigma))
if (return=="model"){ return(sum(lik)) }
if (return=="individual") { return(lik) }
}
rc3Hess <- function(k, means=NULL, vars=NULL, thresh=NULL, rawData, return="model", useMinusTwo=TRUE){
if (ncol(rawData)!=2)stop("Raw data must contain exactly two variables.")
if (length(k)!=3)stop("Please provide a variance, a covariance, and another variance to be tested.")
if(is.null(means)){ means <- apply(rawData, 2, mean, na.rm=TRUE)}
S <- matrix(c(k[1], k[2], k[2], k[3]), 2, 2)
D <- matrix(c(1,0,0,0,0,1,1,0,0,0,0,1), 4, 3) #duplication matrix of order 2
Sinv <- solve2x2(S) #matrix(c(S[2,2], -S[1,2], -S[2,1], S[1,1]), 2, 2)/(S[1,1]*S[2,2] - S[1,2]*S[2,1])
#Sinv <- solve(S)
AnalyticCovHessian <- nrow(rawData) * (-1-useMinusTwo) * -0.5 * t(D) %*% ( kronecker(Sinv, Sinv) ) %*% D
return(AnalyticCovHessian)
}
# Note: 3000x faster (3350x in simulation) than numerical Hessian from numDeriv::hessian of rc3LogLik
# 2000x faster when solve(S) is used instead of solve2x2
indexCov4to2 <- function(i, j, k, l, nvar){
a <- indexCov2to1(i, j, nvar)
b <- indexCov2to1(k, l, nvar)
#indexCov2to1(a, b, nvar*(nvar+1)/2)
return( c(a, b) ) #return upper triangle element
}
indexCov2to1 <- function(i, j, nvar){
if(i < j) {stop("Element should be in lower triangle: column j <= row i")}
a <- i
b <- j
return( a + nvar*(b-1) - sum((b-1):0) )
}
solve2x2 <- function(x){
Xinv <- matrix(c(x[2,2], -x[1,2], -x[2,1], x[1,1]), 2, 2)/(x[1,1]*x[2,2] - x[1,2]*x[2,1])
return(Xinv)
}
univariateThresholdStatisticsHelper <- function(od, data, nvar, n, ntvar, useMinusTwo){
### univariate thresholds
# prep objects
nlevel <- unlist(lapply(od, nlevels))
counts <- lapply(od, table)
thresh <- matrix(NA, ifelse(nvar > 0, max(nlevel)-1, 0), nvar)
threshHess <- list(NULL)
threshWarn <- rep(0, nvar)
if(nvar > 0) {threshJac <- list(NULL)} else threshJac <- NULL
# get the thresholds, their hessians & their jacobians
if(nvar > 0){
for (i in 1:nvar){
a <- proc.time()
# threshold & jacobian
tab <- table(od[,i])
if(any(tab %in% 0)){
msg <- paste0("Variable ", omxQuotes(names(od)[i]), " has a zero frequency category ", omxQuotes(names(tab)[tab %in% 0]), ".\nEliminate this level in your mxFactor() or combine categories in some other way.\nDo not pass go. Do not collect $200.")
stop(msg, call.=FALSE)
}
startVals <- qnorm(cumsum(tab)/sum(!is.na(od[,i])))
if (length(startVals)>2){
uni <- optim(startVals[1:(length(startVals) - 1)],
threshLogLik, return="model", rawData=od[,i], useMinusTwo=useMinusTwo, hessian=TRUE, method="BFGS")
} else {
result <- tryCatch.W(optimize(threshLogLik, lower=-6.28, upper=6.28,
return="model", rawData=od[,i]))
threshWarn[i] <- length(result$warning)
tHold <- result$value
hHold <- numDeriv::hessian(threshLogLik, x=tHold$minimum,
return="model", rawData=od[,i])
uni <- list(par=tHold$minimum, hessian=hHold)
}
# assign thresholds
thresh[1:(nlevel[i] - 1),i] <- uni$par
# assign hessians
threshHess[[i]] <- uni$hessian
# get jacobian
jac <- numDeriv::jacobian(func=threshLogLik, x=uni$par, rawData=od[,i])
# assign jacobian
threshJac[[i]] <- jac[unclass(od[,i]),]
proc.time() - a
}
threshJac <- matrix(unlist(threshJac), nrow=n)
}
names(threshHess) <- names(od)
colnames(thresh) <- names(od)
return(list(thresh, threshHess, threshJac, threshWarn))
}
univariateMeanVarianceStatisticsHelper <- function(ntvar, n, ords, data, useMinusTwo){
### put the means in!
### Use normLogLik function to get ML estimates of univariate
# means and variances.
# And use optim to get Jacobians and Hessians of these ML estimates.
# Populate correct entries of relevant matrices to be used later.
# In particular, the pcVars and pcMeans in the bivariate for loops.
startEst <- numeric(2)
meanEst <- numeric(ntvar)
varEst <- numeric(ntvar)
meanHess <- numeric(ntvar)
meanJac <- matrix(NA, nrow=n, ncol=ntvar)
varHess <- numeric(ntvar)
varJac <- matrix(NA, nrow=n, ncol=ntvar)
for(i in 1:ntvar){
if( !ords[i] ){
startEst[1] <- mean(data[,i], na.rm=TRUE)
startEst[2] <- var(data[,i], na.rm=TRUE)
univEst <- optim(par=startEst, fn=normLogLik, rawData=data[,i],
return="model", useMinusTwo=useMinusTwo,
method="BFGS", gr=normLogLikGrad, hessian=FALSE)
# Re-set variance to be positive, if needed.
if(univEst$par[2] < 0) univEst$par[2] <- -univEst$par[2]
# N.B. The normal LL function takes the abs() of the variance, so sign flips are possible.
univHess <- normLogLikHess(pars=univEst$par, rawData=data[,i], return="model", useMinusTwo=useMinusTwo)
meanEst[i] <- univEst$par[1]
varEst[i] <- univEst$par[2]
meanHess[i] <- univHess[1]
varHess[i] <- univHess[2] #Note: off diagonal elements are analytically exactly zero and are thus discarded.
univJac <- normLogLikGrad( pars=univEst$par, rawData=data[,i],
return="individual", useMinusTwo=useMinusTwo) # First column is mean, second is variance
meanJac[,i] <- univJac[,1]
varJac[,i] <- univJac[,2]
} else{
meanEst[i] <- 0
varEst[i] <- 1 # Explicitly set ordinal mean and variance to 0 and 1
meanHess[i] <- 0 #???
varHess[i] <- 0
meanJac[,i] <- 0 #???
varJac[,i] <- rep(0, n)
}
}
return(list(meanEst, varEst, meanHess, varHess, meanJac, varJac))
}
# mxDataWLS itself is deprecated
# useMinusTwo parameter is deprecated
mxDataWLS <- function(data, type="WLS", useMinusTwo=TRUE, returnInverted=TRUE, fullWeight=TRUE,
suppressWarnings = TRUE, allContinuousMethod=c("cumulants", "marginals"),
silent=!interactive())
{
allContinuousMethod <- match.arg(allContinuousMethod)
# version 0.2
#
#available types
wlsTypes <- c("ULS", "DLS", "DWLS", "WLS", "XLS")
# error checking
if (!is.data.frame(data)){
stop("'data' must be a data frame.")
}
for (cn in colnames(data)) imxVerifyName(cn, 2)
# check type
if (!(type %in% wlsTypes)){
stop(
paste("Type must be one of '",
paste(wlsTypes[-length(wlsTypes)], collapse="', '"),
"', or '", wlsTypes[length(wlsTypes)], "'.", sep="")
)
}
allContinuousMethod <- tolower(allContinuousMethod)
if (!(allContinuousMethod %in% c('cumulant', 'cumulants', 'marginal', 'marginals'))){
stop(
paste("'allContinuousMethod' must be one of ",
"'cumulants' or 'marginals'.\nBoth plural and singular forms are allowed.", sep="")
)
}
# standardize spelling
if (allContinuousMethod == 'cumulant') allContinuousMethod <- 'cumulants'
if (allContinuousMethod == 'marginal') allContinuousMethod <- 'marginals'
# select ordinal variables
ords <- unlist(lapply(data, is.ordered))
badFactors <- !ords & unlist(lapply(data, is.factor))
if (any(badFactors)) {
stop(paste("Factors", omxQuotes(colnames(data)[badFactors]),
"must be ordered and are not"))
}
nvar <- sum(ords)
ntvar <- ncol(data)
n <- dim(data)[1]
msg <- paste("Calculating asymptotic summary statistics for",
ntvar - nvar, "continuous and", nvar, "ordinal variables ...")
msgLen <- nchar(msg)
#message(msg)
if (!silent) imxReportProgress(msg, 0)
# if no ordinal variables, use continuous-only helper
if(nvar == 0 && allContinuousMethod %in% c("cumulant", "cumulants")){
if (!silent) imxReportProgress("", msgLen)
if (any(is.na(data))) {
stop(paste("All continuous data with missingness cannot be",
"handled in the WLS framework.",
"Use na.omit(yourDataFrame) to remove rows with missing values",
"or use maximum likelihood instead"))
}
wls <- wlsContinuousOnlyHelper(data, type)
retVal <- legacyMxData(cov(data), type="acov", acov=wls$use, fullWeight=wls$full, numObs=n)
return(wls.permute(retVal))
}
# separate ordinal and continuous variables (temporary)
od <- data[,ords,drop=FALSE]
cd <- data[,!ords,drop=FALSE]
# thresholds, their hessians & their jacobians
utsList <- univariateThresholdStatisticsHelper(od, data, nvar, n, ntvar, useMinusTwo)
thresh <- utsList[[1]]
threshHess <- utsList[[2]]
threshJac <- utsList[[3]]
threshWarn <- utsList[[4]]
# means and variances with their hessians & their jacobians
umvsList <- univariateMeanVarianceStatisticsHelper(ntvar, n, ords, data, useMinusTwo)
meanEst <- umvsList[[1]]
varEst <- umvsList[[2]]
meanHess <- umvsList[[3]]
varHess <- umvsList[[4]]
meanJac <- umvsList[[5]]
varJac <- umvsList[[6]]
### bivariate polychorics
pcMatrix <- matrix(NA, ntvar, ntvar)
diag(pcMatrix) <- 1
pcJac <- matrix(NA, nrow=n, ncol=ntvar*(ntvar+1)/2)
hessHold <- numeric(ntvar*(ntvar+1)/2)
hessWarn <- rep(0, length(hessHold))
parName <- NULL
r3hess <- array(NA, dim=c(3, 3, ntvar*(ntvar+1)/2))
covHess <- matrix(0, nrow=ntvar*(ntvar+1)/2, ncol=ntvar*(ntvar+1)/2)
# det of correlation matrix = 1 - r^2
# sqrt of det is sqrt(1 - r^2)
# inverse of correlation matrix is (1-r^2) * [ 1 & -r // -r & 1]
# - diagonal elements are 1/(1-r^2)
# - off-diagonal elements are -r/(1-r^2)
# you don't need any of this information now, but may later
for (j in 1:ntvar){
for (i in j:ntvar){
pcData <- data[,c(i,j)]
ordPair <- (ords[i] + ords[j])
if( ordPair == 0 ) { # Continuous variables
logLikFUN <- rcLogLik
pcThresh <- NULL
} else if( ordPair == 1 ) { # Joint variables
logLikFUN <- psLogLik
# Find correct ordinal column
tcols <- as.numeric(na.omit(match(names(ords)[c(i,j)], colnames(thresh))))
pcThresh <- matrix(thresh[,tcols], ncol=1)
pcThresh <- pcThresh[!is.na(pcThresh),]
} else if( ordPair == 2 ) { # Ordinal variables
logLikFUN <- pcLogLik
# Find correct ordinal column
tcols <- as.numeric(na.omit(match(names(ords)[c(i,j)], colnames(thresh))))
pcThresh <- matrix(thresh[,tcols], ncol=2)
} else stop(paste("Cannot determine variable type for columns", i, "and" , j))
pcMeans <- c(meanEst[i], meanEst[j])
pcVars <- c(varEst[i], varEst[j])
pcBounds <- c(-1, 1) * (sqrt(prod(pcVars)) - 1e-6)
if ( (i==j) ){
pcMatrix[i,j] <- pcVars[1]
pcJac[,indexCov2to1(i,j,ntvar)] <- varJac[,i]
hessHold[indexCov2to1(i, j,ntvar)] <- varHess[i]
r3hess[,,indexCov2to1(i, j, ntvar)] <- diag(rep(1, 3))
covHess[matrix(indexCov4to2(i, j, i, j, ntvar), ncol=2)] <- varHess[i]
parName <- c(parName, paste("var", names(pcData)[1], sep="_"))
} else {
# parameter name
parName <- c(parName, paste("poly", names(pcData)[1], names(pcData)[2], sep="_"))
# get polychoric
optResult <- tryCatch.W(optimize(logLikFUN, lower=pcBounds[1], upper=pcBounds[2],
means=pcMeans, vars=pcVars, thresh=pcThresh, return="model", rawData=pcData, useMinusTwo=useMinusTwo))
pc <- optResult$value
hessWarn[indexCov2to1(i, j, ntvar)] <- length(optResult$warning)
# assign polychoric
pcMatrix[j, i] <- pc$minimum
pcMatrix[i, j] <- pc$minimum
# get and assign hessian
# Stop Hessian from walking outside of bounds
small <- 0.1
step <- pc$minimum + c(-1, 1)*.1
if(pcBounds[1] > step[1] || pcBounds[2] < step[2]){
# if we're within 0.1 of the bound then only walk halfway to it.
small <- min(abs(pcBounds - pc$minimum))/2
}
# Compute actual Hessian
hessHold[indexCov2to1(i, j, ntvar)] <- numDeriv::hessian(logLikFUN, x=pc$minimum,
means=pcMeans, vars=pcVars, thresh=pcThresh, return="model", rawData=pcData, useMinusTwo=useMinusTwo, method.args=list(d=small))
# if(ordPair==0){ #Continuous variables
# r3hess[,,indexCov2to1(i, j, ntvar)] <- numDeriv::hessian(rc3LogLik, x=c(pcVars[1], pc$minimum, pcVars[2]),
# means=meanEst[c(i, j)], thresh=pcThresh, return="model", rawData=pcData, useMinusTwo=useMinusTwo)
# r3hess[,,indexCov2to1(i, j, ntvar)] <- cov2cor(r3hess[,,indexCov2to1(i, j, ntvar)])
# covHess[matrix(indexCov4to2(i, i, i, j, ntvar), ncol=2)] <- r3hess[1,2,indexCov2to1(i, j, ntvar)]*sqrt(varHess[i]*hessHold[indexCov2to1(i, j, ntvar)])
# #covHess[matrix(indexCov4to2(i, i, j, j, ntvar), ncol=2)] <- r3hess[1,3,indexCov2to1(i, j, ntvar)]*sqrt(varHess[i]*varHess[j])
# covHess[matrix(indexCov4to2(i, j, j, j, ntvar), ncol=2)] <- r3hess[2,3,indexCov2to1(i, j, ntvar)]*sqrt(hessHold[indexCov2to1(i, j, ntvar)]*varHess[j])
# }
#pcHess[i, j] <- pcHess[j, i]
# get jacobian
if( ordPair == 0 ) { # Continuous variables
assignJac <- matrix(numDeriv::jacobian(func=logLikFUN, x=pc$minimum, means=pcMeans, vars=pcVars, thresh=pcThresh,
rawData=pcData, return="individual", useMinusTwo=useMinusTwo),
nrow=n,
ncol=1)
}
else if( ordPair == 1 ) { #Joint variables
assignJac <- matrix(numDeriv::jacobian(func=logLikFUN, method.args=list(eps=1e-4, d=1e-4, zero.tol=sqrt(.Machine$double.eps/7e-7), r=4, v=2, show.details=FALSE), x=pc$minimum, means=pcMeans, vars=pcVars, thresh=pcThresh,
rawData=pcData, return="individual", useMinusTwo=useMinusTwo),
nrow=n,
ncol=1)
#stop("Jacobian for joint ordinal and continuous variables is not yet implemented.")
} else { # Ordinal variables
localJac <- matrix(numDeriv::jacobian(func=logLikFUN, x=pc$minimum, vars=pcVars, thresh=pcThresh,
rawData=pcData, return="individual", useMinusTwo=useMinusTwo),
nrow=nlevels(pcData[,1]),
ncol=nlevels(pcData[,2]))
# For all ordinal data this is the n1 x n2 table of the 1x1 gradients in each combination
# of levels of the ordered variables.
# Then the following loop turns the matrix into a vector corresponding to the rows of data.
# The continuous data assignJac already returns the vector of 1x1 gradients
# (correponding to data rows).
# assign jacobian
select <- matrix(c(unclass(pcData[,1]), unclass(pcData[, 2])), ncol=2)
assignJac <- localJac[select]
# N.B. when either variable is missing, this returns NA for that row.
}
pcJac[,indexCov2to1(i,j,ntvar)] <- assignJac
}
}
}
# nparam <- nvar*(nvar+1)/2 + length(threshHess) #N.B. not used anywhere
covHess[lower.tri(covHess)] <- t(covHess)[lower.tri(covHess)]
diag(covHess) <- hessHold
colnames(covHess) <- parName
rownames(covHess) <- parName
### put names on everything
# put names on the polychorics
dimnames(pcMatrix) <- list(names(data), names(data))
# put names on the jacobian
colnames(pcJac) <- parName
# put names on the hessian
names(hessHold) <- parName
# Now doing something about the means!
# To replicate old behavior set,
# The following two lines should be deleted.
#meanJac <- NULL
#meanHess <- NULL
# even though these might not be NULL and have been processed earlier.
fullJac <- cbind(pcJac, meanJac, threshJac)
if( nvar > 0 ){
fullHess <- as.matrix(Matrix::bdiag(diag(c(hessHold, meanHess)), Matrix::bdiag(threshHess)))
} else {
fullHess <- diag(c(hessHold, meanHess))
}
#TODO Figure out why certain elements of fullJac end up missing when the data are missing.
quad <- (n-1)*var(fullJac, use="pairwise.complete.obs") #bc colMeans all zero == t(fullJac) %*% fullJac
quad[is.na(quad)] <- 0
sel <- diag(quad)!=0
iqj <- matrix(0, dim(quad)[1], dim(quad)[2])
attIqj <- try(solve(quad[sel, sel]))
# condition has length > 1 error
if(inherits(attIqj, "try-error" )){
iqj[sel,sel] <- MASS::ginv(quad[sel, sel])
warning('First derivative matrix was not intertible. Used pseudo-inverse instead.')
} else {
iqj[sel,sel] <- attIqj
}
# make the weight matrix!!!
wls <- fullHess %*% iqj %*% fullHess
fullNames <- c(parName, colnames(data))
if(nvar > 0){
fullNames <- c(fullNames,
unlist(mapply(function(vn,hess) paste0(vn,'t',1:ncol(hess)),
names(threshHess),
threshHess)))
}
dimnames(wls) <- list(fullNames, fullNames)
fullWarn <- c(hessWarn, threshWarn)
names(fullWarn) <- c(parName, colnames(data)[ords])
if (!suppressWarnings && any(fullWarn > 0)) {
warning(paste("Encountered warnings during optimization of",
omxQuotes(fullWarn[fullWarn > 0])))
}
dls <- diag(diag(wls))
dimnames(dls) <- dimnames(wls)
uls <- (dls>0)*1
dimnames(uls) <- dimnames(wls)
# try the weird non-hao version
xls <- quad
dimnames(xls) <- dimnames(wls)
dummy <- diag(1, nrow=nrow(pcMatrix))
dimnames(dummy) <- dimnames(pcMatrix)
if(nvar > 0){
retVal <- legacyMxData(dummy, type="acov", numObs=n,
acov=diag(1), fullWeight=NA, thresholds=thresh)
} else {
retVal <- legacyMxData(dummy, type="acov", numObs=n,
acov=diag(1), fullWeight=NA, thresholds=NA)
}
retVal@observed <- pcMatrix
if(fullWeight==TRUE){
retVal@fullWeight <- wls
}
retVal@means <- matrix(meanEst, nrow=1)
dimnames(retVal@means) <- list(NULL, names(data))
if (type=="ULS"){
retVal@acov <- uls
}
if (type=="DLS" || type=="DWLS"){
retVal@acov <- dls / n
}
if (type=="WLS"){
retVal@acov <- wls / n
}
if (type=="XLS"){
retVal@acov <- xls
}
if (!silent) imxReportProgress("", msgLen)
return(wls.permute(retVal))
}
wls.permute <- function(mxd) {
acov <- mxd@acov
perm <- match(names(.mxDataAsVector(mxd)), colnames(acov))
mxd@acov <- acov[perm,perm]
fw <- mxd@fullWeight
if (!is.null(fw)) {
mxd@fullWeight <- fw[perm,perm]
}
mxd
}
.mxDataAsVector <- function(mxd) {
mnames <- colnames(mxd@observed)
ordInd <- c()
if (!is.null(mxd@thresholds)) {
ordInd <- match(colnames(mxd@thresholds), mnames)
dth <- !is.na(mxd@thresholds)
}
v <- c()
vn <- c()
for (vx in 1:length(mnames)) {
tcol <- which(vx == ordInd)
if (length(tcol) == 0) {
if (!single.na(mxd@means)) {
v <- c(v, mxd@means[vx])
vn <- c(vn, mnames[vx])
}
} else {
tcount <- sum(dth[,tcol])
v <- c(v, mxd@thresholds[1:tcount,tcol])
vn <- c(vn, paste0(mnames[vx], 't', 1:tcount))
}
}
for (vx in 1:length(mnames)) {
if (any(vx == ordInd)) next
v <- c(v, mxd@observed[vx,vx])
vn <- c(vn, paste0('var_', mnames[vx]))
}
v <- c(v, vechs(mxd@observed))
nv <- length(mnames)
vn <- c(vn, paste0('poly_', vechs(outer(mnames[1:nv], mnames[1:nv], FUN=paste, sep='_'))))
names(v) <- vn
v
}
##' Estimate summary statistics used by the WLS fit function
##'
##' The summary statistics are returned in the observedStats slot of
##' the MxData object.
##'
##' @param mxd an MxData object containing raw data
##' @param type the type of WLS weight matrix
##' @param allContinuousMethod which method to use when all indicators are continuous
##' @param ... Not used. Forces remaining arguments to be specified by name.
##' @param exogenous names variables to be modelled as exogenous
##' @param fullWeight whether to produce a fullWeight matrix
##' @param returnModel whether to return the whole mxModel (TRUE) or just the mxData (FALSE)
##' @param silent logical. Whether to print status to terminal.
##' @seealso
##' \link{mxFitFunctionWLS}
##' @examples
##' omxAugmentDataWithWLSSummary(mxData(Bollen[,1:8], 'raw'))
omxAugmentDataWithWLSSummary <- function(mxd, type=c('WLS','DWLS','ULS'),
allContinuousMethod=c("cumulants", "marginals"),
..., exogenous=c(), fullWeight=TRUE, returnModel=FALSE,
silent=TRUE)
{
type <- match.arg(type)
allContinuousMethod <- match.arg(allContinuousMethod)
prohibitDotdotdot(list(...))
if (mxd@type != 'raw') stop("Data must contain a raw data frame")
data <- mxd@observed
notFound <- is.na(match(exogenous, colnames(data)))
if (any(notFound)) {
stop(paste("Cannot find exogenous", omxQuotes(exogenous), "in data"))
}
nc <- ncol(data)
names <- setdiff(colnames(data), exogenous)
weight <- mxd@weight
if (!is.na(weight)) {
nc <- nc - 1
names <- names[-match(weight, colnames(data))]
}
frequency <- mxd@frequency
if (!is.na(frequency)) {
nc <- nc - 1
names <- names[-match(frequency, colnames(data))]
}
numManifests <- nc - length(exogenous)
fake <- mxModel("fake",
mxd,
mxMatrix("Full", nc, nc, dimnames=list(c(names,exogenous),
c(names,exogenous)), name="S"),
mxMatrix("Full", nc, nc, name="A"),
mxMatrix("Full", numManifests, nc,
dimnames=list(names,c(names,exogenous)), name="F"),
mxExpectationRAM(),
mxFitFunctionWLS(type, allContinuousMethod, fullWeight),
mxComputeOnce('fitfunction', 'fit'))
if (length(exogenous)) fake$A$values[1:numManifests,(numManifests+1):nc] <- 1
fake$S$values[1:numManifests,1:numManifests] <- diag(numManifests)
fake$F$values[1:numManifests,1:numManifests] <- diag(numManifests)
ords <- unlist(lapply(data, is.ordered)) & colnames(data) %in% names
if (any(ords) || allContinuousMethod != 'cumulants') {
fake <- mxModel(fake,
mxMatrix(values=0, nrow=1, ncol=nc,
dimnames=list(c(), c(names,exogenous)), name="M"))
if (length(exogenous)) {
fake$M$labels[1,(numManifests+1):ncol(fake$M)] <-
paste0('data.',exogenous)
}
fake$expectation$M <- "M"
}
if (any(ords)) {
nthr <- sapply(data[,ords], nlevels) - 1L
tmpThr <- matrix(NA, ncol=sum(ords), nrow=max(nthr))
colnames(tmpThr) <- colnames(data)[ords]
for (cx in 1:ncol(tmpThr)) {
tmpThr[1:nthr[cx],cx] <- seq(-1,1,length.out=nthr[cx])
}
fake <- mxModel(fake, mxMatrix(values=tmpThr, name="thresh"))
fake$expectation$thresholds <- "thresh"
}
fake <- mxRun(fake, silent=silent)
if (returnModel) return(fake)
fake$data
}
dataIsRawish <- function(mxd) mxd@type %in% c('none', 'raw', 'acov')
|