File: MxExpectationBA81.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (387 lines) | stat: -rwxr-xr-x 15,761 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#
#   Copyright 2012-2019 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.


setClass(Class = "MxExpectationBA81",
         representation = representation(
	   ItemSpec = "list",
	   item = "MxCharOrNumber",
	   EstepItem = "MxOptionalMatrix",
	   qpoints = "numeric",
	   qwidth = "numeric",
	   mean = "MxOptionalCharOrNumber",
	   cov = "MxOptionalCharOrNumber",
	     debugInternal="logical",
	   dims = "character",
	   verbose = "integer",
	     minItemsPerScore = "integer",
	     weightColumn = "MxCharOrNumber",
	 .detectIndependence = "logical"),
         contains = "MxBaseExpectation")

setMethod("initialize", "MxExpectationBA81",
          function(.Object, ItemSpec, item, EstepItem,
		   qpoints, qwidth, mean, cov, verbose, debugInternal,
		   minItemsPerScore, weightColumn, name = 'expectation') {
            .Object@name <- name
	    .Object@ItemSpec <- ItemSpec
	    .Object@item <- item
	    .Object@EstepItem <- EstepItem
            .Object@qpoints <- qpoints
            .Object@qwidth <- qwidth
            .Object@data <- as.integer(NA)
	    .Object@mean <- mean
	    .Object@cov <- cov
	    .Object@verbose <- verbose
	    .Object@debugInternal <- debugInternal
	    .Object@minItemsPerScore <- minItemsPerScore
	    .Object@weightColumn <- weightColumn
	    .Object@.detectIndependence <- TRUE
            return(.Object)
          }
)

setMethod("genericExpDependencies", signature("MxExpectationBA81"),
	  function(.Object, dependencies) {
		  sources <- c(.Object@mean, .Object@cov, .Object@item)
		  dependencies <- imxAddDependency(sources, .Object@name, dependencies)
		  return(dependencies)
	  })

setMethod("genericExpFunConvert", signature("MxExpectationBA81"), 
	  function(.Object, flatModel, model, labelsData, dependencies) {
		  modelname <- imxReverseIdentifier(model, .Object@name)[[1]]
		  if(is.na(.Object@data)) {
			  msg <- paste(typeof(.Object),
				       "does not have a dataset associated with it in model",
				       omxQuotes(modelname))
			  stop(msg, call.=FALSE)
		  }

		  verifyMvnNames(.Object@cov, .Object@mean, "prior", flatModel, model@name, class(.Object))

		  fnames <- dimnames(flatModel[[.Object@cov]])[[1]]

		  item <- flatModel@matrices[[.Object@item]]
		  if (length(fnames) && (is.null(rownames(item)) || any(rownames(item)[1:length(fnames)] != fnames))) {
			  msg <- paste("The first", length(fnames), "rownames of item",
				       "must be", omxQuotes(fnames))
			  stop(msg)
		  }

		  name <- .Object@name
		  for (s in c("data", "item")) {
			  if (is.null(slot(.Object, s))) next
			  slot(.Object, s) <-
			    imxLocateIndex(flatModel, slot(.Object, s), name)
		  }
		  for (s in c("mean", "cov")) {
			  slot(.Object, s) <- LocateOptionalMatrix(flatModel, slot(.Object, s), name)
		  }

		  mxData <- flatModel@datasets[[.Object@data + 1]]
		  .Object@dims <- colnames(mxData@observed) # for summary

		  if (is.null(colnames(item))) {
			  stop(paste(class(.Object),
				     ": the item matrix must have column names",
				     "to match against the observed data column names."))
		  }
		  
		  dc <- match(colnames(item), .Object@dims) - 1L
		  if (any(is.na(dc))) {
			  msg <- paste("Some items are not found among the observed data columns:",
				       omxQuotes(colnames(item)[is.na(dc)]))
			  stop(msg, call.=FALSE)
		  }

		  .Object@dataColumns <- dc
		  .Object@dataColumnNames <- colnames(item)
		  if (!is.na(.Object@weightColumn)) {
			  wc <- match(.Object@weightColumn, .Object@dims) - 1L
			  if (is.na(wc)) {
				  msg <- paste("Weight column",.Object@weightColumn,
					       "not found in observed data columns")
				  stop(msg, call.=FALSE)
			  }
			  numObs <- sum(mxData@observed[, .Object@weightColumn])
			  if (mxData@numObs != numObs) {
				  stop(paste("For mxData, the number of observations must be set to ", numObs,
					     "; try mxData(observed=obs, type='raw',",
					     " numObs=sum(obs$", .Object@weightColumn, "), ...)", sep=""))
			  }
			  .Object@weightColumn <- wc
		  }

		  return(.Object)
	  })

setMethod("qualifyNames", signature("MxExpectationBA81"), 
	function(.Object, modelname, namespace) {
		.Object@name <- imxIdentifier(modelname, .Object@name)
		for (s in c("item", "mean", "cov")) {
			if (is.null(slot(.Object, s))) next;
			slot(.Object, s) <-
			  imxConvertIdentifier(slot(.Object, s), modelname, namespace)
		}
		return(.Object)
})

setMethod("genericExpRename", signature("MxExpectationBA81"),
	function(.Object, oldname, newname) {
		.Object@item <- renameReference(.Object@item, oldname, newname)
		.Object@mean <- renameReference(.Object@mean, oldname, newname)
		.Object@cov <- renameReference(.Object@cov, oldname, newname)
		.Object@data <- renameReference(.Object@data, oldname, newname)
		return(.Object)
})

##' Create a Bock & Aitkin (1981) expectation
##'
##' Used in conjunction with \link{mxFitFunctionML}, this expectation
##' models ordinal data with a modest number of latent dimensions.
##' Currently, only a multivariate Normal latent distribution is
##' supported.  An equal-interval quadrature is used to integrate over
##' the latent distribution.  When all items use the graded response
##' model and items are assumed conditionally independent then item
##' factor analysis is equivalent to a factor model.
##' 
##' The conditional likelihood of response \eqn{x_{ij}}{x[i,j]} to
##' item \eqn{j} from person \eqn{i} with item parameters
##' \eqn{\xi_j}{\xi[j]} and latent ability \eqn{\theta_i}{\theta[i]} is
##'
##' \deqn{L(x_i|\xi,\theta_i) = \prod_j \mathrm{Pr}(\mathrm{pick}=x_{ij} | \xi_j,\theta_i).}{%
##' L(x[i]|\xi,\theta[i]) = \prod_j Pr(pick=x[i,j] | \xi[j],\theta[i]).}
##'
##' Items are assumed to be conditionally independent.
##' That is, the outcome of one item is assumed to not influence
##' another item after controlling for \eqn{\xi} and \eqn{\theta_i}{\theta[i]}.
##' 
##' The unconditional likelihood is obtained by integrating over
##' the latent distribution \eqn{\theta_i}{\theta[i]},
##'
##' \deqn{L(x_i|\xi) = \int L(x_i|\xi, \theta_i) L(\theta_i) \mathrm{d}\theta_i.}{%
##' L(x[i]|\xi) = \int L(x[i]|\xi, \theta[i]) L(\theta[i]) d \theta[i].}
##'
##' With an assumption that examinees are independently and identically distributed,
##' we can sum the individual log likelihoods,
##'
##' \deqn{\mathcal{L}=\sum_i \log L(x_i | \xi).}{%
##' L=\sum_i \log L(x[i] | \xi).}
##'
##' Response models \eqn{\mathrm{Pr}(\mathrm{pick}=x_{ij} |
##' \xi_j,\theta_i)}{Pr(pick=x[i,j] | \xi[j],\theta[i])}
##' are not implemented in OpenMx, but are imported
##' from the \href{https://cran.r-project.org/package=rpf}{RPF}
##' package. You must pass a list of models obtained from the RPF
##' package in the `ItemSpec' argument. All item models must use the
##' same number of latent factors although some of these factor
##' loadings can be constrained to zero in the item parameter matrix.
##' The `item' matrix contains item parameters with one item per
##' column in the same order at ItemSpec.
##'
##' The `qpoints' and `qwidth' argument control the fineness and
##' width, respectively, of the equal-interval quadrature grid.  The
##' integer `qpoints' is the number of points per dimension. The
##' quadrature extends from negative qwidth to positive qwidth for
##' each dimension. Since the latent distribution defaults to standard
##' Normal, qwidth can be regarded as a value in Z-score units.
##'
##' The optional `mean' and `cov' arguments permit modeling of the
##' latent distribution in multigroup models (in a single group, the
##' latent distribution must be fixed). A separate latent covariance
##' model is used in combination with mxExpectationBA81. The point
##' mass distribution contained in the quadrature is converted into a
##' multivariate Normal distribution by
##' \link{mxDataDynamic}. Typically \link{mxExpectationNormal} is used
##' to fit a multivariate Normal model to these data. Some intricate
##' programming is required.  Examples are given in the manual.
##' mxExpectationBA81 uses a sample size of \eqn{N} for the covariance
##' matrix. This differs from \link{mxExpectationNormal} which uses a
##' sample size of \eqn{N-1}.
##'
##' The `verbose' argument enables diagnostics that are mainly of
##' interest to developers.
##'
##' When a two-tier covariance matrix is recognized, this expectation
##' automatically enables analytic dimension reduction (Cai, 2010).
##' 
##' The optional `weightColumn' is superseded by the weight
##' argument in \link{mxData}. For data with many repeated
##' response patterns, model evaluation time can be
##' reduced. An easy way to transform your data into this form is to
##' use \link[rpf]{compressDataFrame}. Non-integer weights are supported except for
##' \link[rpf]{EAPscores}.
##'
##' mxExpectationBA81 requires \link{mxComputeEM}. During a typical
##' optimization run, latent abilities are assumed for examinees
##' during the E-step.  These examinee scores are implied by the
##' previous iteration's parameter vector. This can be overridden
##' using the `EstepItem' argument.  This is mainly of use to
##' developers for checking item parameter derivatives.
##'
##' Common univariate priors are available from
##' \link[ifaTools]{univariatePrior}.  The standard Normal
##' distribution of the quadrature acts like a prior distribution for
##' difficulty. It is not necessary to impose any additional Bayesian
##' prior on difficulty estimates (Baker & Kim, 2004, p. 196).
##'
##' Many estimators are available for standard errors. Oakes is
##' recommended (see \link{mxComputeEM}).  Also available are
##' Supplement EM (\link{mxComputeEM}), Richardson extrapolation
##' (\link{mxComputeNumericDeriv}), likelihood-based confidence
##' intervals (\link{mxCI}), and the covariance of the rowwise
##' gradients.
##'
##' @aliases MxExpectationBA81-class show,MxExpectationBA81-method print,MxExpectationBA81-method
##' @param ItemSpec a single item model (to replicate) or a list of
##' item models in the same order as the column of \code{ItemParam}
##' @param item the name of the mxMatrix holding item parameters
##' with one column for each item model with parameters starting at
##' row 1 and extra rows filled with NA
##' @param ...  Not used.  Forces remaining arguments to be specified by name.
##' @param qpoints number of points to use for equal interval quadrature integration (default 49L)
##' @param qwidth the width of the quadrature as a positive Z score (default 6.0)
##' @param mean the name of the mxMatrix holding the mean vector
##' @param cov the name of the mxMatrix holding the covariance matrix
##' @param verbose the level of runtime diagnostics (default 0L)
##' @param weightColumn the name of the column in the data containing the row weights (DEPRECATED)
##' @param EstepItem a simple matrix of item parameters for the
##' E-step. This option is mainly of use for debugging derivatives.
##' @param debugInternal when enabled, some of the internal tables are
##' returned in $debug. This is mainly of use to developers.
##' @seealso \href{https://cran.r-project.org/package=rpf}{RPF}
##' @references
##' Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item
##' parameters: Application of an EM algorithm. \emph{Psychometrika, 46}, 443-459.
##'
##' Cai, L. (2010). A two-tier full-information item factor analysis
##' model with applications. \emph{Psychometrika, 75}, 581-612.
##'
##' Pritikin, J. N., Hunter, M. D., & Boker, S. M. (2015). Modular
##' open-source software for Item Factor Analysis. \emph{Educational and
##' Psychological Measurement, 75}(3), 458-474
##'
##' Pritikin, J. N. & Schmidt, K. M. (in press). Model builder for
##' Item Factor Analysis with OpenMx. \emph{R Journal}.
##' 
##' Seong, T. J. (1990). Sensitivity of marginal maximum likelihood
##' estimation of item and ability parameters to the characteristics
##' of the prior ability distributions. \emph{Applied Psychological
##' Measurement, 14}(3), 299-311.
##'
##' @examples
##' library(OpenMx)
##' library(rpf)
##' 
##' numItems <- 14
##' 
##' # Create item specifications
##' spec <- list()
##' for (ix in 1:numItems) { spec[[ix]] <- rpf.grm(outcomes=sample(2:7, 1)) }
##' names(spec) <- paste("i", 1:numItems, sep="")
##' 
##' # Generate some random "true" parameter values
##' correct.mat <- mxSimplify2Array(lapply(spec, rpf.rparam))
##' 
##' # Generate some example data
##' data <- rpf.sample(500, spec, correct.mat)
##' 
##' # Create a matrix of item parameters with starting values
##' imat <- mxMatrix(name="item",
##'                  values=mxSimplify2Array(lapply(spec, rpf.rparam)))
##' rownames(imat)[1] <- 'f1'
##' imat$free[!is.na(correct.mat)] <- TRUE
##' imat$values[!imat$free] <- NA
##' 
##' # Create a compute plan
##' plan <- mxComputeSequence(list(
##'   mxComputeEM('expectation', 'scores',
##'               mxComputeNewtonRaphson(), information="oakes1999",
##'               infoArgs=list(fitfunction='fitfunction')),
##'   mxComputeHessianQuality(),
##'   mxComputeStandardError(),
##'   mxComputeReportDeriv()))
##' 
##' # Build the OpenMx model
##' grmModel <- mxModel(model="grm1", imat,
##'                     mxData(observed=data, type="raw"),
##'                     mxExpectationBA81(ItemSpec=spec),
##'                     mxFitFunctionML(),
##'                     plan)
##' 
##' grmModel <- mxRun(grmModel)
##' summary(grmModel)
mxExpectationBA81 <- function(ItemSpec, item="item", ...,
			      qpoints=49L, qwidth=6.0, mean="mean", cov="cov",
			      verbose=0L, weightColumn=NA_integer_,
			      EstepItem=NULL, debugInternal=FALSE) {

  prohibitDotdotdot(list(...))

	if (packageVersion("rpf") < "0.28") stop("Please install 'rpf' version 0.28 or newer")
	if (qpoints < 3) {
		stop("qpoints must be 3 or greater")
	}
	if (missing(qwidth)) qwidth <- 6
	if (qwidth <= 0) {
		stop("qwidth must be positive")
	}
  
	if (!is.list(ItemSpec)) ItemSpec <- list(ItemSpec)

	minItemsPerScore <- 0L # remove TODO

	if (is.na(weightColumn)) weightColumn <- as.integer(weightColumn)

	return(new("MxExpectationBA81", ItemSpec, item, EstepItem,
		   qpoints, qwidth, mean, cov, as.integer(verbose), debugInternal,
		   minItemsPerScore, weightColumn))
}

##' Like simplify2array but works with vectors of different lengths
##'
##' Vectors are filled column-by-column into a matrix. Shorter vectors
##' are padded with NAs to fill whole columns.
##' @param x a list of vectors
##' @param higher whether to produce a higher rank array (defaults to FALSE)
##' @examples
##' v1 <- 1:3
##' v2 <- 4:5
##' v3 <- 6:10
##' mxSimplify2Array(list(v1,v2,v3))
##'
##' #     [,1] [,2] [,3]
##' # [1,]    1    4    6
##' # [2,]    2    5    7
##' # [3,]    3   NA    8
##' # [4,]   NA   NA    9
##' # [5,]   NA   NA   10

mxSimplify2Array <- function(x, higher=FALSE) {
	if (higher) {
		stop("higher=TRUE is not implemented. Consider using simplify2array")
	}
  len <- sapply(x, length)
  biggest <- which(len == max(len))[1]
  out <- matrix(NA, nrow=max(len), ncol=length(x))
  for (iter in 1:length(x)) {
	  if (len[iter] == 0) next
    out[1:len[iter],iter] <- x[[iter]]
  }
  colnames(out) <- names(x)
  rownames(out) <- names(x[[biggest]])
  out
}