File: MxExpectationMixture.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (154 lines) | stat: -rw-r--r-- 5,340 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
setClass(Class = "MxExpectationMixture",
	representation = representation(
		weights = "MxCharOrNumber",
		components = "MxOptionalCharOrNumber",
		verbose = "integer",
		scale = "character"
	),
	contains = "MxBaseExpectation")

setMethod("initialize", "MxExpectationMixture",
          function(.Object, components, weights, verbose, scale, name = 'expectation') {
		  .Object@data = as.integer(NA)
		  .Object@name <- name
		  .Object@components <- components
		  .Object@weights <- weights
		  .Object@verbose <- verbose
		  .Object@scale <- scale
		  .Object
	  })

setMethod("genericExpDependencies", signature("MxExpectationMixture"),
	  function(.Object, dependencies) {
		  components <- paste(.Object@components, "expectation", sep=".")
		  sources <- c(.Object@weights, components)
		  dependencies <- imxAddDependency(sources, .Object@name, dependencies)
		  return(dependencies)
	  })

setMethod("genericExpFunConvert", signature("MxExpectationMixture"), 
	  function(.Object, flatModel, model, labelsData, dependencies) {
		  if (length(.Object@components)) {
			  origComponents <- .Object@components
			  .Object@components <- vapply(.Object@components, function(group) {
				  eNumber <- match(paste(group, "expectation", sep="."),
						   names(flatModel@expectations))
				  eNumber - 1L
			  }, 1L, USE.NAMES = FALSE)
			  if (any(is.na(.Object@components))) {
				  stop(paste(model@name,": cannot locate expectation ",
					     omxQuotes(origComponents[is.na(.Object@components)]), sep=""),
				       call. = FALSE)
			  }
		  }
		  .Object
	  })

setMethod("qualifyNames", signature("MxExpectationMixture"), 
	function(.Object, modelname, namespace) {
		.Object@name <- imxIdentifier(modelname, .Object@name)
		.Object@data <- imxConvertIdentifier(.Object@data, 
			modelname, namespace)
		for (s in c('weights')) {
			if (is.null(slot(.Object, s))) next;
			slot(.Object, s) <-
				imxConvertIdentifier(slot(.Object, s), modelname, namespace)
		}
		.Object
})

setMethod("genericNameToNumber", signature("MxExpectationMixture"),
	  function(.Object, flatModel, model) {
		  name <- .Object@name
		  .Object@data <- imxLocateIndex(flatModel, .Object@data, name)
		  .Object@weights <- imxLocateIndex(flatModel, .Object@weights, name)
		  .Object
	  })

setMethod("genericGetExpected", signature("MxExpectationMixture"),
	function(.Object, model, what, defvar.row=1, subname=model@name) {
		ret <- list()
		if ('weights' %in% what) {
			wname <- .modifyDottedName(model@name, .Object@weights)
			weights <- mxEvalByName(wname, model, compute=TRUE, defvar.row=defvar.row)
			if (.Object@scale == 'softmax') {
				weights <- exp(weights)
			} else if (.Object@scale == 'sum') {
				#OK
			} else if(.Object@scale == 'none') {
				#OK
			} else { stop(.Object@scale) }
			if(.Object@scale != 'none'){
				weights <- weights / rowSums(weights)
			}
			ret[['weights']] <- weights
		}
		ret
	})

setMethod("genericGenerateData", signature("MxExpectationMixture"),
	function(.Object, model, nrows, subname, empirical, returnModel, use.miss,
		   .backend, nrowsProportion, silent) {
		origData <- findDataForSubmodel(model, subname)
		origRows <- if (!is.null(origData)) { nrowMxData(origData) } else { NULL }
		nrows <- calcNumRows(nrows, nrowsProportion, origRows, subname)

		cdata <- list()
		for (c1 in .Object@components) {
		  cdata[[c1]] <- mxGenerateData(model, returnModel=FALSE, nrows=nrows, use.miss=FALSE,
						subname=c1, empirical=empirical, .backend=.backend)
		}
		data <- cdata[[1]]

		# This is an inefficient way to generate data. It would be
		# better to generate cpick first and then generate 1 row
		# at a time from the component expectations. I didn't code
		# it that way because the API is not really set up for
		# generating data 1 row at a time.
		cpick <- NULL
		doDefVar <- imxHasDefinitionVariable(model)
		if(doDefVar){
      if (is.null(origData)) {
        stop("Definition variable(s) found, but no data is available")
      }
			if (origData$type != 'raw') {
				stop(paste("Definition variable(s) found, but original data is type",
					omxQuotes(origData$type)))
			}
			origData <- origData$observed
			if(nrows != nrow(origData)){
				stop("Definition variable(s) found, but the number of rows in the data do not match the number of rows requested for data generation.")
			}
			cpick <- rep(NA, nrows)
			for (rx in 1:nrows) {
				weights <- mxGetExpected(model, "weights", defvar.row=rx)
				cpick[rx] <- sample.int(length(.Object@components), 1, prob=weights)
			}
		} else {
			weights <- mxGetExpected(model, "weights")
			cpick <- sample.int(length(.Object@components), nrows, replace=TRUE, prob=weights)
		}
		if (length(.Object@components) > 1) for (cx in 2:length(.Object@components)) {
			data[cpick==cx,] <- cdata[[cx]][cpick == cx,]
		}
		if(doDefVar){
			for (dcol in setdiff(colnames(origData), colnames(data))) {
				data[[dcol]] <- origData[[dcol]]
			}
		}
		if (returnModel) {
		  mxModel(model[[subname]], mxData(as.data.frame(data), "raw"))
		} else {
		  as.data.frame(data)
		}
	})

mxExpectationMixture <- function(components, weights="weights",
				      ..., verbose=0L, scale=c('softmax', 'sum', 'none')) {
  prohibitDotdotdot(list(...))

	scale <- match.arg(scale)

	new("MxExpectationMixture", components, weights,
	    as.integer(verbose), scale)
}