1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
#
# Copyright 2007-2021 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#------------------------------------------------------------------------------
# Author: Michael D. Hunter
# Date: 2015-06-14
# Filename: MxFactorScores.R
# Purpose: Write a helper function for computing various type of factor scores
#------------------------------------------------------------------------------
requireMinManifests <- function(row) {
stop(paste("mxFactorScores: row", row, "has missing data.",
"Hence, you must specify minManifests"),
call. = FALSE)
}
mxFactorScores <- function(model, type=c('ML', 'WeightedML', 'Regression'), minManifests=as.integer(NA))
{
warnModelCreatedByOldVersion(model)
if(length(unlist(strsplit(model@name, split=' ', fixed=TRUE))) > 1){
message(paste('The model called', omxQuotes(model@name), 'has spaces in the model name. I cannot handle models with spaces in the model name, so I removed them before getting factor scores.'))
model <- mxRename(model, paste(unlist(strsplit(model@name, split=' ', fixed=TRUE)), collapse=''))
}
# Handling of multigroup models
if(is.null(model$expectation) && (class(model$fitfunction) %in% "MxFitFunctionMultigroup") ){
submNames <- sapply(strsplit(model$fitfunction$groups, ".", fixed=TRUE), "[", 1)
ret <- list()
for(amod in submNames){
ret[[amod]] <- mxFactorScores(model[[amod]], type, minManifests)
}
return(ret)
}
if(model$data$type!='raw'){
stop("The 'model' argument must have raw (not summary) data.")
}
classExpect <- class(model$expectation)
if(!(classExpect %in% "MxExpectationLISREL") && !(classExpect %in% "MxExpectationRAM")){
stop('Factor scores are only implemented for LISREL and RAM expectations.')
}
if((classExpect %in% "MxExpectationLISREL") && !single.na(model$expectation$LY)){
stop('Factor scores for LISREL are only implemented for the exogenous-only model, but an LY matrix was detected. Try restructuring your model as LISREL exogenous-only, or as RAM.')
}
if(classExpect %in% "MxExpectationLISREL"){
lx <- mxEvalByName(model$expectation$LX, model, compute=TRUE)
nksix <- dim(lx)
nksi <- nksix[2]
nx <- nksix[1]
factorNames <- dimnames(lx)[[2]]
factorScoreHelperFUN <- lisrelFactorScoreHelper
} else if(classExpect %in% "MxExpectationRAM"){
fm <- mxEvalByName(model$expectation$F, model, compute=TRUE)
nksix <- dim(fm)
nksi <- nksix[2] - nksix[1]
nx <- nksix[1]
factorNames <- dimnames(fm)[[2]][!createOppositeF(fm)$is.manifest]
factorScoreHelperFUN <- ramFactorScoreHelper
}
nrows <- nrow(model$data$observed)
res <- array(as.numeric(NA), c(nrows, nksi, 2))
if(any(type %in% c('ML', 'WeightedML'))){
model <- omxSetParameters(model, labels=names(omxGetParameters(model)), free=FALSE)
work <- factorScoreHelperFUN(model)
dataModelName <- work$name
if(type[1]=='WeightedML'){
wup <- mxModel(model="Container", work,
mxAlgebraFromString(paste(work@name, ".weight + ", work@name, ".fitfunction", sep=""), name="wtf"),
mxFitFunctionAlgebra("wtf")
)
work <- wup
}
work@data <- NULL
fullData <- as.data.frame(model$data$observed)
plan1 <- list(
GD=mxComputeGradientDescent(nudgeZeroStarts=FALSE))
wantSE <- tolower(mxOption(model=model, key="Standard Errors")) == "yes"
if (wantSE) {
plan1 <- c(plan1,
ND=mxComputeNumericDeriv(),
SE=mxComputeStandardError())
}
plan <- list(
SOS=mxComputeSetOriginalStarts(),
LD=mxComputeLoadData(dataModelName, names(fullData),
method="data.frame", byrow=FALSE,
observed=fullData),
TC=mxComputeTryCatch(mxComputeSequence(plan1)),
CP=mxComputeCheckpoint(toReturn=TRUE, standardErrors = wantSE))
plan <- mxComputeLoop(plan, maxIter = nrow(fullData))
rawData <- fullData[1,,drop=FALSE]
if(type[1]=='ML'){
fit <- mxModel(model=work, mxData(rawData, 'raw'))
} else if(type[1]=='WeightedML'){
work@submodels[[1]]@data <- mxData(rawData, 'raw')
fit <- mxModel(model=work)
}
fit <- mxRun(mxModel(fit, plan))
got <- fit$compute$steps$CP$log
res[,,1] <- as.matrix(got[,names(coef(fit)),drop=FALSE])
if (wantSE) {
res[,,2] <- as.matrix(got[,paste0(names(coef(fit)), 'SE'),drop=FALSE])
} else {
msg <- paste0("factor-score standard errors not available from MxModel '",
model$name,"' because calculating SEs is turned off for that ",
"model (possibly due to one or more MxConstraints)")
warning(msg, sep="")
}
res <- clearExcessivelyMissingRows(fullData, minManifests, res)
} else if(tolower(type)=='regression'){
if(!single.na(model$expectation$thresholds)){
stop('Regression factor scores cannot be computed when there are thresholds (ordinal data).')
}
if(!(classExpect %in% "MxExpectationLISREL")){
#stop('Regression factor scores are only possible for LISREL expectations.')
res <- RAMrfs(model, res, minManifests)
} else{
ss <- mxModel(model=model,
mxMatrix('Zero', nksi, nksi, name='stateSpaceA'),
mxMatrix('Zero', nksi, 1, name='stateSpaceX0'),
mxMatrix('Iden', nksi, nksi, name='stateSpaceP0'),
mxMatrix('Full', 1, 1, values=1, name='stateSpaceU'),
mxExpectationStateSpace(A='stateSpaceA', B=model$expectation$KA, C=model$expectation$LX, D=model$expectation$TX, Q=model$expectation$PH, R=model$expectation$TD, x0='stateSpaceX0', P0='stateSpaceP0', u='stateSpaceU'))
resDel <- mxKalmanScores(ss)
res[,,1] <- resDel$xUpdated[-1,, drop=FALSE]
res[,,2] <- apply(resDel$PUpdated[,,-1, drop=FALSE], 3, function(x){sqrt(diag(x))})
# Kill the rows with too much missing data
useCols <- dimnames(ss[[ss$expectation$C]])[[1]]
rawData <- model$data$observed[ , useCols, drop=FALSE]
res <- clearExcessivelyMissingRows(rawData, minManifests, res)
}
} else {
stop('Unknown type argument to mxFactorScores')
}
dimnames(res) <- list(1:dim(res)[1], factorNames, c('Scores', 'StandardErrors'))
return(res)
}
clearExcessivelyMissingRows <- function(rawData, minManifests, res) {
numPresent <- apply(!is.na(rawData), 1, sum)
if (any(numPresent < ncol(rawData)) && is.na(minManifests)) {
requireMinManifests(which(numPresent < ncol(rawData))[1])
}
res[numPresent < minManifests, , 1] <- NA
res[numPresent < minManifests, , 2] <- NA
res
}
lisrelFactorScoreHelper <- function(model){
lx <- mxEvalByName(model$expectation$LX, model, compute=TRUE)
nksix <- dim(lx)
nksi <- nksix[2]
nx <- nksix[1]
ksiMean <- mxEvalByName(model$expectation$KA, model, compute=TRUE)
newKappa <- mxMatrix("Full", nksi, 1, values=ksiMean, free=TRUE, name="Score", labels=paste0("fscore", 1:nksi))
scoreKappa <- mxAlgebraFromString(paste("Score -", model$expectation$KA), name="SKAPPA", dimnames=list(dimnames(lx)[[2]], 'one'))
newExpect <- model$expectation
newExpect$KA <- "SKAPPA"
newExpect@.discreteCheckCount <- FALSE
newWeight <- mxAlgebraFromString(paste0("log(det(", model$expectation$PH, ")) + ( (t(SKAPPA)) %&% ", model$expectation$PH, " ) + ", nksi, "*log(2*3.1415926535)"), name="weight")
work <- mxModel(model=model, name=paste("FactorScores", model$name, sep=''), newKappa, scoreKappa, newExpect, newWeight)
return(work)
}
createOppositeF <- function(Fmatrix){
is.manifest <- as.logical(colSums(Fmatrix))
mdim <- nrow(Fmatrix)
tdim <- ncol(Fmatrix)
ldim <- tdim - mdim
tnam <- dimnames(Fmatrix)[[2]]
lnam <- tnam[!is.manifest]
OFmatrix <- matrix(0, nrow=ldim, ncol=tdim, dimnames=list(lnam, tnam))
OFmatrix[lnam, lnam] <- diag(1, nrow=ldim)
return(list(OF=OFmatrix, is.manifest=is.manifest))
}
ramFactorScoreHelper <- function(model){
Fmat <- mxEvalByName(model$expectation$F, model, compute=TRUE)
alldim <- dim(Fmat)
tdim <- alldim[2]
mdim <- alldim[1]
ldim <- tdim - mdim
OFmat <- createOppositeF(Fmat)
fullMean <- mxEvalByName(model$expectation$M, model, compute=TRUE)
scoreStart <- fullMean
scoreStart[!OFmat$is.manifest] <- 0
basVal <- fullMean
basVal[OFmat$is.manifest] <- 0
basNam <- paste0("Base", model$expectation$M)
newMean <- mxMatrix("Full", 1, tdim, values=scoreStart, free=!OFmat$is.manifest, name="Score", labels=paste0("fscore", dimnames(Fmat)[[2]]))
basMean <- mxMatrix("Full", 1, tdim, values=basVal, free=FALSE, name=basNam)
scoreMean <- mxAlgebraFromString(paste("Score -", basNam), name="ScoreMinusM", dimnames=list('one', dimnames(Fmat)[[2]]))
newExpect <- model$expectation
newExpect@.discreteCheckCount <- FALSE
newExpect$M <- "ScoreMinusM"
oppF <- mxMatrix('Full', nrow=tdim-mdim, ncol=tdim, values=OFmat$OF, name='oppositeF')
imat <- mxMatrix('Iden', tdim, tdim, name='IdentityMatrix')
imaInv <- mxAlgebraFromString(paste("solve(IdentityMatrix - ", model$expectation$A, ")"), name='IdentityMinusAInverse')
lcov <- mxAlgebraFromString(paste("oppositeF %*% IdentityMinusAInverse %*% ", model$expectation$S, " %*% t(IdentityMinusAInverse) %*% t(oppositeF)"), name='TheLatentRAMCovariance')
newWeight <- mxAlgebraFromString(paste0("log(det(TheLatentRAMCovariance)) + ( (ScoreMinusM %*% t(oppositeF)) %&% TheLatentRAMCovariance ) + ", ldim, "*log(2*3.1415926535)"), name="weight")
work <- mxModel(model=model, name=paste("FactorScores", model$name, sep=''), newMean, scoreMean, basMean, newExpect, oppF, imat, imaInv, lcov, newWeight)
return(work)
}
RAMrfs <- function(model, res, minManifests) {
i <- j <- 1
manvars <- model@manifestVars
latvars <- model@latentVars
defvars <- findIntramodelDefVars(model)
relevantDataCols <- c(manvars,defvars)
dat <- model@data@observed
I <- diag(length(manvars)+length(latvars))
Ilat <- diag(length(latvars))
while(i<=dim(res)[1]){
continublockflag <- ifelse(i<dim(res)[1],TRUE,FALSE)
manvars.curr <- manvars[ !is.na(dat[i,manvars]) ]
while(continublockflag){
#To include a subsequent row in the current block of rows,
#we need to be sure that its missingness pattern is the same, and that if there are definition variables,
#that their values in the subsequent row are equal to those in the previous rows:
if(
j<dim(res)[1] &&
all(is.na(dat[j,relevantDataCols])==is.na(dat[(j+1),relevantDataCols])) &&
( !length(defvars) || all(dat[j,defvars]==dat[(j+1),defvars]) )
){j <- j+1}
else{continublockflag <- FALSE}
}
unfilt <- solve(I-mxEvalByName("A",model,T,defvar.row=i))%*%mxEvalByName("S",model,T,defvar.row=i)%*%
t(solve(I-mxEvalByName("A",model,T,defvar.row=i)))
dimnames(unfilt) <- list(c(manvars,latvars),c(manvars,latvars)) #<--Necessary?
latmeans <- matrix(1,ncol=1,nrow=(j-i+1)) %x% t(solve(Ilat-mxEvalByName("A",model,T,defvar.row=i)[latvars,latvars]) %*%
matrix(mxEvalByName("M",model,T,defvar.row=i)[,latvars],ncol=1))
missing <- is.na(dat[i,manvars])
anyMissing <- any(missing)
if (anyMissing && is.na(minManifests)) requireMinManifests(i)
if (anyMissing && sum(!missing) < minManifests) {
res[i:j,,1] <- NA
res[i:j,,2] <- NA
} else {
if(all(missing)){
res[i:j,,1] <- latmeans
res[i:j,,2] <- matrix(1,ncol=1,nrow=(j-i+1)) %x% matrix(sqrt(diag(unfilt[latvars,latvars])),nrow=1)
}
else{
obsmeans <- matrix(1,ncol=1,nrow=(j-i+1)) %x%
matrix(mxGetExpected(model,"means",defvar.row=i)[,which(!is.na(dat[i,manvars]))],nrow=1)
dat.curr <- as.matrix(dat[i:j,manvars.curr])
if(i==j){dat.curr <- matrix(dat.curr,nrow=1)} #<--Annoying...
res[i:j,,1] <- ( (dat.curr - obsmeans) %*%
(solve(unfilt[manvars.curr,manvars.curr])%*%unfilt[manvars.curr,latvars]) ) + latmeans
indeterminateVariance <- unfilt[latvars,latvars] -
(unfilt[latvars,manvars.curr]%*%solve(unfilt[manvars.curr,manvars.curr])%*%
unfilt[manvars.curr,latvars])
res[i:j,,2] <- matrix(1,ncol=1,nrow=(j-i+1)) %x% matrix(sqrt(diag(indeterminateVariance)),nrow=1)
}
}
i <- j+1
j <- i
}
return(res)
}
findIntramodelDefVars <- function(model){
matlabs <- unlist(lapply(model@matrices,FUN=function(x){x@labels[!is.na(x@labels)]}))
if( !("data." %in% substr(matlabs,1,5)) ){return(NULL)}
else{
defvars <- matlabs[which(substr(matlabs,1,5)=="data.")]
defvars <- substr(defvars,6,nchar(defvars))
}
return( defvars )
}
|