File: MxThreshold.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (629 lines) | stat: -rwxr-xr-x 22,850 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
#
#   Copyright 2007-2021 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

setClass(Class = "MxThreshold",
	representation = representation(
		variable = "character",
		nThresh  = "numeric",
		free     = "logical",
    values   = "numeric",
		labels   = "character",
		lbound   = "numeric",
		ubound   = "numeric"
))

setMethod("initialize", "MxThreshold",
	function(.Object, variable, nThresh, free, values, labels, lbound, ubound) {
		.Object@variable <- variable
		.Object@nThresh  <- nThresh
		.Object@free     <- free
		.Object@values   <- values
		.Object@labels   <- labels
		.Object@lbound   <- lbound
		.Object@ubound   <- ubound
		return(.Object)
	}
)

setMethod("$", "MxThreshold", imxExtractSlot)

setReplaceMethod("$", "MxThreshold",
	function(x, name, value) {
        stop("Changing threshold values directly is not recommended.  Please use the mxThreshold() function instead.")
	}
)

setMethod("names", "MxThreshold", slotNames)

##' mxNormalQuantiles
##'
##' Get quantiles from a normal distribution
##'
##' @param nBreaks the number of thresholds, or a vector of the number of thresholds
##' @param mean the mean of the underlying normal distribution
##' @param sd the standard deviation of the underlying normal distribution
##' @aliases omxNormalQuantiles
##' @return
##' a vector of quantiles
##' @examples
##' mxNormalQuantiles(3)
##' mxNormalQuantiles(3, mean=7)
##' mxNormalQuantiles(2, mean=1, sd=3)
mxNormalQuantiles <- function(nBreaks, mean=0, sd=1) {
	if(length(nBreaks) > 1) {
		return(unlist(mapply(mxNormalQuantiles, nBreaks=nBreaks, mean=mean, sd=sd)))
	}
	if(is.na(nBreaks)) {
		return(as.numeric(NA))
	}
	if(nBreaks < 0) {
		stop("Error in mxNormalQuantiles: You must request at least one quantile.")
	}
	return(qnorm(seq(0,1,length.out=nBreaks+2)[1:nBreaks+1], mean=mean, sd=sd))
}

omxNormalQuantiles <-mxNormalQuantiles

thresholdCheckLengths <- function(nThresh, starts, free, values, labels, lbounds, ubounds, varName) {

  if(single.na(starts)) {
    starts = rep(0, 5)
  }
  ends <- matrix(NA, 5, 2)

  ends[1,] <- thresholdCheckSingleLength(nThresh, starts[1], length(free), "free/fixed designations", varName)
  ends[2,] <- thresholdCheckSingleLength(nThresh, starts[2], length(values), "values", varName)
  ends[3,] <- thresholdCheckSingleLength(nThresh, starts[3], length(labels), "labels", varName)
  ends[4,] <- thresholdCheckSingleLength(nThresh, starts[4], length(lbounds), "lower bounds", varName)
  ends[5,] <- thresholdCheckSingleLength(nThresh, starts[5], length(ubounds), "upper bounds", varName)

  ends
}

thresholdCheckSingleLength <- function(nElements, startingPoint, len, lenName, varName) {

  if(nElements > len - startingPoint) {
		if(startingPoint != 0 && startingPoint %% len != 0) {
			stop(paste("This is tricky.  You've specified a set of",
				lenName, "for the mxThreshold function that does not",
				"quite line up. mxThreshold has consumed", startingPoint,
				"values from the list of", len, "but needs", nElements, "to complete",
				"the list of", lenName, "for", omxQuotes(varName)), call.=FALSE)
		}
    if(nElements %% len != 0) {
			stop(paste("mxThreshold() call will generate",
				nElements, "thresholds but you have specified",
				len, lenName, "for", omxQuotes(varName)), call. = FALSE)
		} else {
      startingPoint = 0
		}
	}
	return(c(startingPoint+1, startingPoint + nElements))
}

as.MxMatrix.MxThreshold <- function(threshold) {
  mxMatrix("Full", nrow=threshold@nThresh, ncol=1, free=threshold@free, values=threshold@values,
           labels=threshold@labels, lbound=threshold@lbound, ubound=threshold@ubound,
           dimnames=list(NULL, threshold@variable),condenseSlots=FALSE)
}

thresholdSubset <- function(var, a) {
  return(rep(var, length.out=a[2])[a[1]:a[2]])
}

splitThresholds <- function(variables, nThresh, free, values, labels, lbound, ubound) {

	nVars <- length(variables)
	nThresh <- rep(nThresh, length.out=nVars)
	nElements <- sum(nThresh)
	thresholds <- as.list(rep(NA, nVars))

  starts <- NA
  # This block is primarily to catch cases like nThresh=c(2, 4, 2), free=c(TRUE, TRUE, TRUE, FALSE)
  # That is, where the wrapping of an input vector doesn't mesh with the threshold count
  for(i in 1:nVars) {
    idx <- thresholdCheckLengths(nThresh[i], starts, free, values, labels, lbound, ubound, variables[i])
    thresholds[[i]] <- new("MxThreshold", variables[i], nThresh[i], thresholdSubset(free, idx[1,]),
                         as.numeric(thresholdSubset(values, idx[2,])),
                         as.character(thresholdSubset(labels, idx[3,])),
                         as.numeric(thresholdSubset(lbound, idx[4,])),
                         as.numeric(thresholdSubset(ubound, idx[5,])))
    starts <- idx[,2]
  }

  if(length(thresholds) == 1) {
    thresholds <- thresholds[[1]]
  }

	return(thresholds)
}

mxThreshold <- function(vars, nThresh=NA, free=FALSE, values=mxNormalQuantiles(nThresh),
                        labels=NA, lbound=NA, ubound=NA) {
  if(all.na(vars)) {
    stop("You must specify a variable name for which these thresholds should be applied.")
  }
	nVars = length(vars)
	if(single.na(nThresh)) {
		if(nVars > 0) {
			stop(paste("mxThreshold error: You must specify a list of numbers",
			" of levels if you specify more than one variable name."))
		} else if( all(is.na(values))) {
			stop(paste("mxThreshold error: You must specify either values or a",
			"number of levels for each variable in order to generate thresholds."))
		}
		nThresh = length(values)
	}
	repeats <- setdiff(vars, unique(vars))
	if(length(repeats) != 0) {
		stop(paste("mxThreshold error: You listed", omxQuotes(repeats),
		"more than once in your list of thresholded variables."))
	}

	nLevelsListed = length(nThresh)
	if(nVars < nLevelsListed) {
		stop(paste("mxThreshold error: You specified a number of levels for",
			 nLevelsListed, "variables, but only listed", nVars, "variables."))
	}
	if(!( nVars == nLevelsListed || nVars %% nLevelsListed==0)) {
			stop(paste("mxThreshold error: number of variables listed (",
			nVars, ") is not a multiple of the number of level counts (",
			nLevelsListed, ")."))
	}

	splitThresholds(vars, nThresh, free, values, labels, lbound, ubound)

}

mxMarginalProbit <- mxThreshold

generateDataThresholdColumns <- function(covarianceColumnNames, thresholdsMatrix) {
	covarianceLength <- length(covarianceColumnNames)
	thresholdColumns <- replicate(covarianceLength, as.integer(NA))
	thresholdLevels <- replicate(covarianceLength, as.integer(NA))

	thresholdColumnNames <- dimnames(thresholdsMatrix)[[2]]
	for(i in 1:length(thresholdColumnNames)) {
		oneThresholdName <- thresholdColumnNames[[i]]
		numThresholds <- sum(!is.na(thresholdsMatrix[,i]))
		columnIndex <- match(oneThresholdName, covarianceColumnNames)
		thresholdColumns[[columnIndex]] <- as.integer(i - 1)
		thresholdLevels[[columnIndex]] <- as.integer(numThresholds)
	}
	return(list(thresholdColumns, thresholdLevels))
}

verifyThresholds <- function(flatModel, model, labelsData, dataName, covNames, threshName) {
	if (single.na(threshName) || flatModel@unsafe) {
		return()
	}

	modelName <- flatModel@name
	object <- flatModel[[threshName]]
	if (is.null(object)) {
		stop(paste("The thresholds matrix/algebra", omxQuotes(threshName),
			"for model", omxQuotes(modelName),
			"does not exist."), call. = FALSE)
	} else if (is(object, "MxAlgebra") || is(object, "MxMatrix")) {
	} else {
		stop(paste("The thresholds entity", omxQuotes(threshName),
			"for model", omxQuotes(modelName),
			"is not a MxMatrix or MxAlgebra."), call. = FALSE)
	}

	tuple <- evaluateMxObject(threshName, flatModel, labelsData, new.env(parent = emptyenv()))
	thresholds <- tuple[[1]]
  mxd <- flatModel@datasets[[dataName]]
	observed <- mxd@observed
	dataType <- mxd@type

	threshNames <- verifyThresholdNames(thresholds, mxd, modelName, observedThresholds=FALSE)

	dataThresh <- NA
	if(dataType == "acov") {
		dataThresh <- flatModel@datasets[[dataName]]@observedStats[['thresholds']]
	}

	for(i in 1:length(threshNames)) {
		tName <- threshNames[[i]]
		tColumn <- thresholds[,i]
		values = NA
		if(dataType=="raw") {
			observedColumn <- observed[,tName]
			if(!all(is.na(observedColumn))) {
				if (!is.ordered(observedColumn)) {
						stop(paste("In model",
							omxQuotes(modelName),
							"column",
							omxQuotes(tName),
							"is not an ordered factor.",
							"Use mxFactor() on this column."), call. = FALSE)
				}
				expectedThreshCount <- length(levels(observedColumn)) - 1
				if (nrow(thresholds) < expectedThreshCount) {
					stop(paste("In model",
						   omxQuotes(modelName),
						   "the number of thresholds in column",
						   omxQuotes(tName),
						   "is less than the (l - 1), where l is equal",
						   "to the number of levels in the ordinal",
						   "data. Use mxFactor() on this column."),
					     call. = FALSE)
				}
				values <- tColumn[1:expectedThreshCount]
				if (any(is.na(values))) {
					stop(paste("In model",
						omxQuotes(modelName),
						"I was expecting", expectedThreshCount,
						"thresholds in column", omxQuotes(tName),
						"of matrix/algebra",
						omxQuotes(simplifyName(threshName, modelName)),
						"but I hit NA values after only",
						length(values[!is.na(values)]), "thresholds.",
						"You need to increase the number of",
						"thresholds for", omxQuotes(tName),
						"and give them values other than NA"), call. = FALSE)
				}
			}
		} else if(dataType == "acov") {
			observedThresh <- dataThresh[,tName]
			if( !single.na(observedThresh)) {
				expectedThreshCount <- sum(!is.na(observedThresh))
				if (nrow(thresholds) < expectedThreshCount) {
					stop(paste("In model",
						omxQuotes(modelName),
						"the number of expected thresholds in column",
						omxQuotes(tName),
						"(", nrow(thresholds), "), is less than the number of thresholds",
						"observed in the data (", expectedThreshCount , "). If you use",
						"a prep function to set up your mxData object,",
						"be sure you ran mxFactor() on your data first.",
						"Otherwise, be sure all unused thresholds in your",
						"data thresholds argument are NA."),
						call. = FALSE)
				}
				values <- tColumn[1:expectedThreshCount]
				if (any(is.na(values))) {
					stop(paste("In model",
						omxQuotes(modelName),
						"I was expecting", expectedThreshCount,
						"thresholds in column", omxQuotes(tName),
						"of matrix/algebra",
						omxQuotes(simplifyName(threshName, modelName)),
						"but I hit NA values after only",
						length(values[!is.na(values)]), "thresholds.",
						"You need to increase the number of",
						"thresholds for", omxQuotes(tName),
						"and give them values other than NA"), call. = FALSE)
				}
			}
		}
		if(!single.na(values)) {
			sortValues <- sort(values, na.last = NA)
			if (!identical(sortValues, values)) {
				stop(paste("In model",
					omxQuotes(modelName),
					"the thresholds in column",
					omxQuotes(tName), "of matrix/algebra",
					omxQuotes(simplifyName(threshName, modelName)),
					"are not in ascending order.",
					"The current order is: ",
					omxQuotes(values), "and",
					"ascending order is: ",
					omxQuotes(sortValues),".",
					"Only the first", expectedThreshCount,
					"element(s) of this column are inspected."),
					call. = FALSE)
			}
		}
	}
}

verifyThresholdNames <- function(thresholds, obsNames, modelName=NA, observedThresholds=TRUE) {
  if (is(obsNames, "MxData")) obsNames <- observedDataNames(obsNames)

	if(is.na(modelName)) {
		modelName = "[Model Name Unknown]"
	}

	if (is.null(dimnames(thresholds)) || is.null(dimnames(thresholds)[[2]])) {
		if(!observedThresholds) {
			stop(paste("The thresholds matrix/algebra",
			"for model", omxQuotes(modelName), "does not contain column names"),
			call. = FALSE)
		} else {
			stop(paste(
				"The observed thresholds matrix does not contain column names"),
				 call. = FALSE)
		}
	}
	if (is.null(obsNames)) {
		if(!observedThresholds) {
			stop(paste("The observed data frame for model",
				omxQuotes(modelName), "does not contain column names"),
				call. = FALSE)
		} else {
			stop(paste("The observed data does not contain column names"),
			call. = FALSE)
		}
	}
	threshNames <- dimnames(thresholds)[[2]]
	missingNames <- setdiff(threshNames, obsNames)
	if (length(missingNames) > 0) {
		if(!observedThresholds) {
			stop(paste("The column name(s)", omxQuotes(missingNames),
				"appear in the thresholds matrix but not",
				"in the observed data.frame or matrix",
				"in model", omxQuotes(modelName)), call. = FALSE)
		} else {
			stop(paste("The column name(s)", omxQuotes(missingNames),
				"appear in the thresholds but not",
				"in the observed data."), call. = FALSE)
		}
	}
	return(threshNames)
}


displayThreshold <- function(object) {
	cat("mxThreshold", '\n')
	cat("$variable: ", omxQuotes(object@variable), '\n')
	cat("$nThresh", object@nThresh, '\n')
	cat("$values: ", object@values, '\n')
	cat("$free: ", object@free, '\n')
	cat("$labels: ", object@labels, '\n')
	cat("$lbound: ", object@lbound, '\n')
	cat("$ubound: ", object@ubound, '\n')
}

setMethod("print", "MxThreshold", function(x,...) { displayThreshold(x) })
setMethod("show", "MxThreshold", function(object) { displayThreshold(object) })
setAs("MxThreshold", "MxMatrix", function(from) { as.MxMatrix.MxThreshold(from)})

# --------------

#' An S4 base class for discrete marginal distributions
#'
#' @aliases DiscreteBase-class $,DiscreteBase-method $<-,DiscreteBase-method
#' @seealso \link{mxMarginalPoisson}, \link{mxMarginalNegativeBinomial}
DiscreteBase <- setClass(Class = "DiscreteBase",
	representation = representation(
		variable = "character",
		maxCount = "integer",
		free     = "logical",
		labels   = "character",
		lbound   = "numeric",
		ubound   = "numeric"))

setMethod("names", "DiscreteBase", slotNames)

setMethod("$", "DiscreteBase", imxExtractSlot)

setReplaceMethod("$", "DiscreteBase",
	function(x, name, value) {
    stop(paste("Changing",class(x), "values directly is not recommended."))
	}
)

setGeneric("getSpec", function(mxm) return(standardGeneric("getSpec")))

setClass(Class = "MxMarginalPoisson",
         contains = "DiscreteBase",
         representation = representation(
           zeroInf  = "numeric",
           lambda   = "numeric"))

setMethod("initialize", "MxMarginalPoisson",
          function(.Object, variable, maxCount, lambda, zeroInf, free,
                   labels, lbound, ubound) {
            .Object@variable <- variable
            .Object@maxCount <- as.integer(maxCount)
            .Object@lambda   <- lambda
            .Object@zeroInf  <- zeroInf
            .Object@free     <- as.logical(free)
            .Object@labels   <- as.character(labels)
            .Object@lbound   <- as.numeric(lbound)
            .Object@ubound   <- as.numeric(ubound)
            return(.Object)
          })

setMethod("getSpec", "MxMarginalPoisson", function(mxm) c(mxm@maxCount, 1))

setAs("MxMarginalPoisson", "MxMatrix", function(from) {
  mxMatrix("Full", nrow=2, ncol=1,
           free=from@free,
           values=c(from@zeroInf, from@lambda),
           labels=from@labels,
           lbound=from@lbound,
           ubound=from@ubound,
           dimnames=list(NULL, from@variable),
           condenseSlots=FALSE)
})

displayMarginalPoisson <- function(Ob) {
	cat("mxMarginalPoisson", '\n')
  for (sl in c("variable", "maxCount", "lambda", "zeroInf",
               "free", "labels", "lbound", "ubound")) {
    slname <- paste0("$", sl)
    cat(slname, ":", slot(Ob, sl), '\n')
  }
  invisible(Ob)
}

setMethod("print", "MxMarginalPoisson", function(x,...) { displayMarginalPoisson(x) })
setMethod("show", "MxMarginalPoisson", function(object) { displayMarginalPoisson(object) })

#' Indicator with marginal Poisson distribution
#'
#' @param vars character vector of manifest indicators
#' @param maxCount maximum observed count
#' @param lambda non-negative means
#' @param zeroInf zero inflation parameter in probability units
#' @param free logical vector indicating whether paremeters are free
#' @param labels character vector of parameter labels
#' @param lbound numeric vector of lower bounds
#' @param ubound numeric vector of upper bounds
#' @return a list of MxMarginPoisson obects
#' @aliases MxMarginalPoisson-class print,MxMarginalPoisson-method show,MxMarginalPoisson-method $,MxMarginalPoisson-method $<-,MxMarginalPoisson-method
mxMarginalPoisson <- function(vars, maxCount=NA, lambda, zeroInf=.01,
                      free=TRUE, labels=NA, lbound=0, ubound=c(1,NA))
{
  for (par in c('maxCount','lambda','zeroInf')) {
    if (length(get(par)) != length(vars) &&
          length(vars) %% length(get(par)) != 0) {
      stop(paste("Parameter",omxQuotes(par),"has wrong length"))
    }
  }
  for (par in c('free','labels','lbound','ubound')) {
    if (length(get(par)) > 1 && length(get(par))/2 != length(vars) &&
          length(vars) %% (length(get(par))/2) != 0) {
      stop(paste("Parameter",omxQuotes(par),"has wrong length"))
    }
  }

	poi <- vector('list', length(vars))
  vx <- 1
  for (xx in 1:length(vars)) {
    poi[[xx]] <-
      new("MxMarginalPoisson", vars[xx],
          maxCount[1 + (xx-1) %% length(maxCount)],
          lambda[1 + (xx-1) %% length(lambda)],
          zeroInf[1 + (xx-1) %% length(zeroInf)],
          sapply(0:1, function(x) free[1 + (vx+x-1) %% length(free)]),
          sapply(0:1, function(x) labels[1 + (vx+x-1) %% length(labels)]),
          sapply(0:1, function(x) lbound[1 + (vx+x-1) %% length(lbound)]),
          sapply(0:1, function(x) ubound[1 + (vx+x-1) %% length(ubound)]))
    vx <- vx + 2
  }
  if (length(poi) == 1) poi <- poi[[1]]
  poi
}

setClass(Class = "MxMarginalNegativeBinomial",
         contains = "DiscreteBase",
         representation = representation(
           zeroInf  = "numeric",
           size   = "numeric",
           prob = "MxOptionalNumeric",
           mu = "MxOptionalNumeric"))

setMethod("initialize", "MxMarginalNegativeBinomial",
          function(.Object, variable, maxCount, size, prob, mu, zeroInf, free,
                   labels, lbound, ubound) {
            .Object@variable <- variable
            .Object@maxCount <- as.integer(maxCount)
            .Object@size     <- size
            .Object@prob     <- prob
            .Object@mu       <- mu
            .Object@zeroInf  <- zeroInf
            .Object@free     <- as.logical(free)
            .Object@labels   <- as.character(labels)
            .Object@lbound   <- as.numeric(lbound)
            .Object@ubound   <- as.numeric(ubound)
            return(.Object)
          })

setMethod("getSpec", "MxMarginalNegativeBinomial",
          function(mxm) c(mxm@maxCount, ifelse(length(mxm@prob), 2, 3)))

setAs("MxMarginalNegativeBinomial", "MxMatrix", function(from) {
  if (length(from@mu) == 0) {
    v2 <- from@prob
  } else {
    v2 <- from@mu
  }
  mxMatrix("Full", nrow=3, ncol=1,
           free=from@free,
           values=c(from@zeroInf, from@size, v2),
           labels=from@labels,
           lbound=from@lbound,
           ubound=from@ubound,
           dimnames=list(NULL, from@variable),
           condenseSlots=FALSE)
})

displayMarginalNegativeBinomial <- function(Ob) {
	cat("mxMarginalNegativeBinomial", '\n')
  for (sl in c("variable", "maxCount", "size", "prob", "mu", "zeroInf",
               "free", "labels", "lbound", "ubound")) {
    slname <- paste0("$", sl)
    cat(slname, ":", slot(Ob, sl), '\n')
  }
  invisible(Ob)
}

setMethod("print", "MxMarginalNegativeBinomial", function(x,...) { displayMarginalNegativeBinomial(x) })
setMethod("show", "MxMarginalNegativeBinomial", function(object) { displayMarginalNegativeBinomial(object) })

#' Indicator with marginal Negative Binomial distribution
#'
#' @param vars character vector of manifest indicators
#' @param maxCount maximum observed count
#' @param size positive target number of successful trials
#' @param prob probability of success in each trial
#' @param mu alternative parametrization via mean
#' @param zeroInf zero inflation parameter in probability units
#' @param free logical vector indicating whether paremeters are free
#' @param labels character vector of parameter labels
#' @param lbound numeric vector of lower bounds
#' @param ubound numeric vector of upper bounds
#' @return a list of MxMarginPoisson obects
#' @aliases MxMarginalNegativeBinomial-class print,MxMarginalNegativeBinomial-method show,MxMarginalNegativeBinomial-method $,MxMarginalNegativeBinomial-method $<-,MxMarginalNegativeBinomial-method
mxMarginalNegativeBinomial <- function(vars, maxCount=NA, size, prob=c(), mu=c(), zeroInf=.01,
                      free=TRUE, labels=NA, lbound=NA, ubound=NA)
{
  if (!missing(prob) && !missing(mu)) stop("'prob' and 'mu' both specified")
  isMu <- !missing(mu)
  if (!isMu) {
    if (missing(lbound)) lbound <- c(0,0,0)
    if (missing(ubound)) ubound <- c(1,NA,1)
  } else {
    if (missing(lbound)) lbound <- c(0,0,NA)
    if (missing(ubound)) ubound <- c(1,NA,NA)
  }
  parList <- c('maxCount','size','zeroInf', ifelse(isMu,'mu','prob'))

  for (par in parList) {
    if (length(get(par)) != length(vars) &&
          length(vars) %% length(get(par)) != 0) {
      stop(paste("Parameter",omxQuotes(par),"has wrong length"))
    }
  }
  for (par in c('free','labels','lbound','ubound')) {
    if (length(get(par)) > 1 && length(get(par))/3 != length(vars) &&
          length(vars) %% (length(get(par))/3) != 0) {
      stop(paste("Parameter",omxQuotes(par),"has wrong length"))
    }
  }

	poi <- vector('list', length(vars))
  vx <- 1
  for (xx in 1:length(vars)) {
    poi[[xx]] <-
      new("MxMarginalNegativeBinomial", vars[xx],
          maxCount[1 + (xx-1) %% length(maxCount)],
          size[1 + (xx-1) %% length(size)],
          prob[1 + (xx-1) %% length(prob)],
          mu[1 + (xx-1) %% length(mu)],
          zeroInf[1 + (xx-1) %% length(zeroInf)],
          sapply(0:2, function(x) free[1 + (vx+x-1) %% length(free)]),
          sapply(0:2, function(x) labels[1 + (vx+x-1) %% length(labels)]),
          sapply(0:2, function(x) lbound[1 + (vx+x-1) %% length(lbound)]),
          sapply(0:2, function(x) ubound[1 + (vx+x-1) %% length(ubound)]))
    vx <- vx + 3
  }
  if (length(poi) == 1) poi <- poi[[1]]
  poi
}