1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
#
# Copyright 2007-2020 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#TODO:
#Need more input checking? For instance, initialGradientIterations should be a positive integer, right?
runWithCounter <- function(model, count, silent, intervals=FALSE) {
if(silent){
plan <- model@compute
plan <- mxComputeLoop(list(plan), i=count)
fit <- mxRun(mxModel(model, plan), suppressWarnings = T,
silent=F, unsafe=T, intervals=intervals, beginMessage=FALSE)
fit@compute <- fit@compute$steps[[1]]
return(fit)
}
else{
return(mxRun(model=model, suppressWarnings = T, unsafe=T, silent=T, intervals=intervals, beginMessage=T))
}
}
mxTryHard <- function(
model, extraTries = 10, greenOK = FALSE, loc = 1,
scale = 0.25, initialGradientStepSize = imxAutoOptionValue("Gradient step size"),
initialGradientIterations = imxAutoOptionValue('Gradient iterations'),
initialTolerance=as.numeric(mxOption(NULL,'Optimality tolerance')),
checkHess = TRUE, fit2beat = Inf, paste = TRUE,
iterationSummary=FALSE, bestInitsOutput=TRUE, showInits=FALSE, verbose=0, intervals = FALSE,
finetuneGradient=TRUE, jitterDistrib=c("runif","rnorm","rcauchy"), exhaustive=FALSE,
maxMajorIter=3000, OKstatuscodes, wtgcsv=c("prev","best","initial"), silent=interactive()
){
#Initialize stuff & check inputs:
jitterDistrib <- match.arg(jitterDistrib)
wtgcsv <- match.arg(wtgcsv,c("prev","best","initial"),several.ok=T)
if(missing(OKstatuscodes)){OKstatuscodes <- as.integer(c(0,as.logical(greenOK[1])))}
else if( !(0 %in% OKstatuscodes) ){OKstatuscodes <- c(OKstatuscodes,0)}
#if( !("MxModel" %in% class(model)) ){stop("argument 'model' must be an object of class 'MxModel'")}
if(initialTolerance<0){stop("value for argument 'initialTolerance' cannot be negative")}
warnModelCreatedByOldVersion(model)
if (omxHasDefaultComputePlan(model)) {
model@compute <- NULL
}
lackOfConstraints <- !imxHasConstraint(model)
hasThresholds <- imxHasThresholds(model)
defaultComputePlan <- (is.null(model@compute) || is(model@compute, 'MxComputeDefault'))
relevantOptions <- list(base::options()$mxOption$"Calculate Hessian", base::options()$mxOption$"Standard Errors",
base::options()$mxOption$"Default optimizer", base::options()$mxOption$"Gradient algorithm")
if("Calculate Hessian" %in% names(model@options)){relevantOptions[[1]] <- model@options$"Calculate Hessian"}
if("Standard Errors" %in% names(model@options)){relevantOptions[[2]] <- model@options$"Standard Errors"}
if("Gradient algorithm" %in% names(model@options)){relevantOptions[[4]] <- model@options$"Gradient algorithm"}
if(!lackOfConstraints){
if(imxHasWLS(model)){relevantOptions[[2]] <- "No"}
if(checkHess){
message("Polite note from mxTryHard: Hessian not checked as model contains mxConstraints")
checkHess <- FALSE
}
}
ndgi <- ifelse(hasThresholds,3L,4L)
ndgss <- ifelse(hasThresholds,1e-5,1e-7)
#If the options call for SEs and/or Hessian, there is no custom compute plan, and the Hessian will not be checked
#every fit attempt, then computing SEs and/or Hessian can be put off until the MLE is obtained:
SElater <- ifelse( (!checkHess && relevantOptions[[2]]=="Yes" && defaultComputePlan), TRUE, FALSE )
Hesslater <- ifelse( (!checkHess && relevantOptions[[1]]=="Yes" && defaultComputePlan), TRUE, FALSE )
if(SElater && !Hesslater){
warning('the "Standard Errors" option is enabled and the "Calculate Hessian" option is disabled, which may result in poor-accuracy standard errors')
}
doIntervals <- ifelse ( (length(model@intervals) && intervals), TRUE, FALSE )
lastNoError<-FALSE
generalTolerance <- 1e-5 #used for hessian check and lowest min check
gradientStepSize <- initialGradientStepSize
tolerance <- initialTolerance
gradientIterations <- initialGradientIterations
lastBestFitCount<-0 #number of consecutive improvements in fit
stopflag <- FALSE #should the iterative optimization process stop?
goodflag <- FALSE #is the best fit so far acceptable?
numdone <- 0
lowestminsofar<-Inf
finalfit<- NULL
previousLen <- 0L
msg <- ""
validcount <- 0
errorcount <- 0
fitvalAtStarts <- NA
inits <- omxGetParameters(model)
params <- inits
if(is.na(maxMajorIter)){maxMajorIter <- max(1000, (3*length(inits)) + (10*length(model@constraints)))}
parlbounds <- omxGetParameters(model=model,fetch="lbound")
parlbounds[is.na(parlbounds)] <- -Inf
parubounds <- omxGetParameters(model=model,fetch="ubound")
parubounds[is.na(parubounds)] <- Inf
#Get fit at start values:
inputCompute <- model@compute
model@compute <- mxComputeSequence(
list(CO=mxComputeOnce(from="fitfunction", what="fit", .is.bestfit=TRUE),
RE=mxComputeReportExpectation()))
model@compute@.persist <- TRUE
modelAtStartValues <- suppressWarnings(try(runWithCounter(model, 0, silent, F)))
if (!inherits(modelAtStartValues, "try-error")) {
fitvalAtStarts <- modelAtStartValues@fitfunction@result[1]
#If there are MxConstraints, we don't know if they're satisfied at the start values,
#so we don't want to treat the fit at the start values as the lowest so far,
#since an uphill step may be necessary to get to feasibility:
if(is.finite(fitvalAtStarts) && lackOfConstraints){lowestminsofar <- fitvalAtStarts}
}
model@compute <- inputCompute
rm(modelAtStartValues, inputCompute)
#Begin main 'while' loop.
while (!stopflag) {
if(numdone==0){
if(!silent){
message("\nBeginning initial fit attempt")
} else{
msg <- "Beginning initial fit attempt"
imxReportProgress(msg, previousLen)
previousLen <- nchar(msg)
}
} else{
if(!silent){
message(paste0('\nBeginning fit attempt ', numdone, ' of at maximum ', extraTries, ' extra tries'))
} else{
msg <- paste0('Beginning fit attempt ', numdone, ' of at maximum ', extraTries, ' extra tries')
imxReportProgress(msg, previousLen)
previousLen <- nchar(msg)
}
}
if(lastNoError && ("prev" %in% wtgcsv)){params <- omxGetParameters(fit)}
if(lastBestFitCount == 0 && numdone > 0){ #if the last fit was not the best
if(exists('bestfit') && ("best" %in% wtgcsv)){params <- bestfit.params} #if bestfit exists use this instead
#sometimes, use initial start values instead:
if(numdone %% 4 == 0 && ("initial" %in% wtgcsv)){params <- inits}
model <- omxSetParameters(
model, labels = names(params),
values=imxJiggle(params=params,lbounds=parlbounds,ubounds=parubounds,dsn=jitterDistrib,loc=loc,scale=scale)
)
if(finetuneGradient){
gradientStepSize <- initialGradientStepSize
tolerance <- initialTolerance
gradientIterations<-initialGradientIterations
}
}#end if last fit not best section
if(lastBestFitCount > 0){ #if the last fit was the best so far
if(exists('bestfit')){
if("best" %in% wtgcsv){params <- bestfit.params}
model <- bestfit #<--Necessary?
}
if(defaultComputePlan==TRUE && finetuneGradient){
if(lastBestFitCount == 2) gradientStepSize <- gradientStepSize *.1
if(lastBestFitCount == 3) gradientStepSize <- gradientStepSize *10
if(lastBestFitCount == 5) gradientStepSize <- gradientStepSize *.1
if(lastBestFitCount > 0) tolerance<-tolerance * .001
if(lastBestFitCount > 0) gradientIterations<-gradientIterations+2
if(lastBestFitCount > 2) model <- omxSetParameters(
model, labels = names(bestfit.params),
values=imxJiggle(params=bestfit.params,lbounds=parlbounds,ubounds=parubounds,dsn=jitterDistrib,loc=loc,
scale=scale/10)
)
}
else{
model <- omxSetParameters(
model, labels = names(bestfit.params),
values=imxJiggle(params=bestfit.params,lbounds=parlbounds,ubounds=parubounds,dsn=jitterDistrib,loc=loc,
scale=scale/ifelse(finetuneGradient,10,1))
)
}
}#end if last fit was best section
if(defaultComputePlan==TRUE){
steps <- list(GD=mxComputeGradientDescent(
verbose=verbose, gradientStepSize = gradientStepSize,
nudgeZeroStarts=FALSE, gradientIterations = gradientIterations, tolerance=tolerance,
maxMajorIter=maxMajorIter, gradientAlgo=relevantOptions[[4]]))
if(checkHess){steps <- c(steps,ND=mxComputeNumericDeriv(stepSize=ndgss,iterations=ndgi),SE=mxComputeStandardError())}
model <- OpenMx::mxModel(
model,
mxComputeSequence(c( steps,RD=mxComputeReportDeriv(),RE=mxComputeReportExpectation() )))
}
#showInits=FALSE by default for mxTryHard() and its 4 specialized wrappers, and the extra printing that occurs when showInits=TRUE
#is too much to summarize in one line. Therefore, if the user has provided showInits=TRUE, then give him/her the extra printing
#requested notwithstanding the value of argument 'silent' (which by default is TRUE in an interactive session):
if(showInits) {
message('\nStarting values: ')
message(paste0(names(omxGetParameters(model)),' : ', omxGetParameters(model),'\n'))
}
fit <- suppressWarnings(try(runWithCounter(model, numdone, silent, intervals=F)))
numdone <- numdone + 1
#If fit resulted in error:
if (inherits(fit, "try-error") || !is.finite(fit@fitfunction@result[1]) || fit$output$status$status== -1) {
#^^^is.finite() returns FALSE for Inf, -Inf, NA, and NaN
lastBestFitCount <- 0
lastNoError<-FALSE
errorcount <- errorcount + 1
if(!silent){message('\n Fit attempt generated errors')}
}
#If fit did NOT result in error:
if (!inherits(fit, "try-error") && is.finite(fit@fitfunction@result[1]) && fit$output$status$status != -1) {
lastNoError <- TRUE
validcount <- validcount + 1
if(fit@fitfunction@result[1] >= lowestminsofar){
lastBestFitCount <- 0
if(fit@fitfunction@result[1] >= lowestminsofar + generalTolerance){
if(!silent){message(paste0('\n Fit attempt worse than current best: ',fit@fitfunction@result[1] ,' vs ', lowestminsofar ))}
else{
msg <- paste0('Fit attempt ',numdone-1,', fit=',fit@fitfunction@result[1],', worse than previous best (',lowestminsofar,')')
imxReportProgress(msg, previousLen)
previousLen <- nchar(msg)
}
}}
#Current fit will become bestfit if (1) its fitvalue is strictly less than lowestminsofar, or
#(2) its fitvalue is no greater than lowestminsofar (within tolerance) AND it satisfies the criteria for
#an acceptable result (i.e., goodflag gets set to TRUE):
if(fit@fitfunction@result[1] < lowestminsofar){ #<--If this is the best fit so far
if(!silent){message(paste0('\n Lowest minimum so far: ',fit@fitfunction@result[1]))}
else{
msg <- paste0('Fit attempt ',numdone-1,', fit=',fit@fitfunction@result[1],', new current best! (was ',lowestminsofar,')')
imxReportProgress(msg, previousLen)
previousLen <- nchar(msg)
}
lastBestFitCount<-lastBestFitCount+1
lowestminsofar <- fit@fitfunction@result[1]
bestfit <- fit
bestfit.params <- omxGetParameters(bestfit)
}
if(fit@fitfunction@result[1] <= lowestminsofar + generalTolerance){
###########goodflag checks
goodflag <- TRUE
if( !(fit$output$status[[1]] %in% OKstatuscodes) ){
goodflag <- FALSE
if(!silent){
message(paste(' OpenMx status code ', fit$output$status[[1]], ' not in list of acceptable status codes, ',
paste("(",paste(OKstatuscodes,collapse=","),")",sep=""), sep=""))
}
}
if(fit@fitfunction@result[1] > fit2beat) {
if(!silent){message(paste0(' Fit value of ', fit@fitfunction@result[1], ' greater than fit2beat of ', fit2beat))}
goodflag <- FALSE
}
if(checkHess==TRUE) {
fit@output["infoDefinite"] <- TRUE
hessEigenval <- try(eigen(fit$output$calculatedHessian, symmetric = T, only.values = T)$values,silent=T)
if (inherits(hessEigenval, 'try-error')) {
if(!silent){message(paste0(' Eigenvalues of Hessian could not be calculated'))}
goodflag <- FALSE
fit@output["infoDefinite"] <- FALSE
}
if (!inherits(hessEigenval, 'try-error') && any(hessEigenval < 0)) {
if(!silent){message(paste0(' Not all eigenvalues of the Hessian are positive: ', paste(hessEigenval,collapse=', ')))}
goodflag <- FALSE
fit@output["infoDefinite"] <- FALSE
}}
if(goodflag){
bestfit <- fit
bestfit.params <- omxGetParameters(bestfit)
}
stopflag <- goodflag && !exhaustive
} #end goodflag checks
#iterationSummary=FALSE by default for mxTryHard() and its 4 specialized wrappers, and the extra printing that occurs when
#iterationSummary=TRUE is too much to summarize in one line. Therefore, if the user has provided iterationSummary=TRUE, then give him/her
#the extra printing requested notwithstanding the value of argument 'silent' (which by default is TRUE in an interactive session):
if(iterationSummary){
message(paste0("\n Attempt ",numdone-1," result: "))
message(paste(names(params),": ", fit$output$estimate,"\n"))
message(paste0("fit value = ", fit@fitfunction@result[1]))
}
} #end 'if fit did not result in error' section
if(numdone > extraTries){
if(!silent){message('\nRetry limit reached')}
stopflag <- TRUE
}
} #end while loop
if(goodflag){
if(!silent){message('\nSolution found\n')}
if(any(Hesslater,SElater,doIntervals)){
if(!silent){message("Final run, for Hessian and/or standard errors and/or confidence intervals\n")}
else{
msg <- 'Final run, for Hessian and/or standard errors and/or confidence intervals'
imxReportProgress(msg, previousLen)
previousLen <- nchar(msg)
}
finalfit <- bestfit
if(defaultComputePlan){
steps <- list()
if(doIntervals){
ciOpt <- mxComputeGradientDescent(
nudgeZeroStarts=FALSE,gradientIterations=gradientIterations,
tolerance=tolerance, maxMajorIter=maxMajorIter, gradientAlgo=relevantOptions[[4]])
steps <- c(steps,CI=mxComputeConfidenceInterval(
plan=ciOpt, constraintType=ciOpt$defaultCImethod))
}
if(Hesslater){
steps <- c(steps,ND=mxComputeNumericDeriv(stepSize=ndgss,iterations=ndgi))
} else {
steps <- c(steps,ND=mxComputeNumericDeriv(knownHessian=bestfit$output$hessian,
checkGradient=FALSE,stepSize=ndgss,iterations=ndgi))
}
if(SElater){
steps <- c(steps,SE=mxComputeStandardError(),HQ=mxComputeHessianQuality())
}
steps <- c(steps,RD=mxComputeReportDeriv())
finalfit <- OpenMx::mxModel(finalfit,mxComputeSequence(steps=steps))
}
finalfit <- suppressWarnings(try(runWithCounter(finalfit, numdone, silent, intervals=doIntervals)))
if (inherits(finalfit, "try-error") || finalfit$output$status$status== -1) {
if(!silent){message(' Errors during final fit for Hessian/SEs/CIs\n')}
} else {
if (length(summary(finalfit)$npsolMessage) > 0){
if(!silent){message(' Warning messages generated from final run for Hessian/SEs/CIs\n')}
}
}
}
imxReportProgress("", previousLen)
message(paste0("\n Solution found! Final fit=", signif(bestfit@fitfunction@result[1],8), " (started at ", signif(fitvalAtStarts,8), ") (" ,numdone, " attempt(s): ", validcount, " valid, ", errorcount," errors)\n"))
if (length(summary(bestfit)$npsolMessage) > 0) {
warning(summary(bestfit)$npsolMessage)
}
if(iterationSummary){
message(paste(names(bestfit.params),": ", bestfit$output$estimate,"\n"))
message(paste0("fit value = ", bestfit@fitfunction@result[1]))
}
bestfit <- THFrankenmodel(finalfit,bestfit,defaultComputePlan,Hesslater,SElater,doIntervals,checkHess,lackOfConstraints)
} #end 'if goodflag' section
if(!goodflag){
if (exists("bestfit")) {
if(any(Hesslater,SElater,doIntervals)){
if(!silent){message("Computing Hessian and/or standard errors and/or confidence intervals from imperfect solution\n")}
else{
msg <- "Computing Hessian and/or standard errors and/or confidence intervals from imperfect solution"
imxReportProgress(msg, previousLen)
previousLen <- nchar(msg)
}
finalfit <- bestfit
if(defaultComputePlan){
steps <- list()
if(doIntervals){
ciOpt <- mxComputeGradientDescent(
nudgeZeroStarts=FALSE,gradientIterations=gradientIterations,
tolerance=tolerance, maxMajorIter=maxMajorIter, gradientAlgo=relevantOptions[[4]])
steps <- c(steps,CI=mxComputeConfidenceInterval(
plan=ciOpt, constraintType=ciOpt$defaultCImethod))
}
if(Hesslater){
steps <- c(steps,ND=mxComputeNumericDeriv(stepSize=ndgss,iterations=ndgi))
} else {
steps <- c(steps,ND=mxComputeNumericDeriv(knownHessian=bestfit$output$hessian,
checkGradient=FALSE,stepSize=ndgss,iterations=ndgi))
}
if(SElater){
steps <- c(steps,SE=mxComputeStandardError(),HQ=mxComputeHessianQuality())
}
steps <- c(steps,RD=mxComputeReportDeriv())
finalfit <- OpenMx::mxModel(bestfit,mxComputeSequence(steps=steps))
}
finalfit <- suppressWarnings(try(runWithCounter(finalfit, numdone, silent, intervals=doIntervals)))
if (inherits(finalfit, "try-error") || finalfit$output$status$status== -1) {
if(!silent){message('Errors occurred during final run for Hessian/SEs/CIs; returning best fit as-is\n')}
}
}
imxReportProgress("", previousLen)
message(paste0("\n Retry limit reached; Best fit=", signif(bestfit@fitfunction@result[1],8), " (started at ", signif(fitvalAtStarts,8), ") (", numdone, " attempt(s): ", validcount, " valid, ", errorcount," errors)\n"))
if (length(bestfit$output$status$statusMsg) > 0) {
warning(bestfit$output$status$statusMsg)
}
if(bestfit$output$status$code==6 && !(6 %in% OKstatuscodes)){
if(!silent){message('\n Uncertain solution found - consider parameter validity, try again, increase extraTries, change inits, change model, or check data!\n')}
}
if(iterationSummary){
message(paste(names(bestfit.params),": ", bestfit$output$estimate,"\n"))
message(paste0("fit value = ", bestfit@fitfunction@result[1]))
}
bestfit <- THFrankenmodel(finalfit,bestfit,defaultComputePlan,Hesslater,SElater,doIntervals,checkHess,lackOfConstraints)
}
}
if(bestInitsOutput && exists("bestfit")){
bestfit.params <- omxGetParameters(bestfit)
if(!silent){
message(" Start values from best fit:")
if(paste) message(paste(bestfit.params, sep=",", collapse = ","))
if(!paste) message(paste(names(bestfit.params),": ", bestfit.params,"\n"))
}
}
if (!exists("bestfit")) {
if (inherits(fit, 'try-error')) warning(fit[[length(fit)]])
imxReportProgress("", previousLen)
message('\n All fit attempts resulted in errors - check starting values or model specification\n')
bestfit<-fit
}
if( defaultComputePlan && !("try-error" %in% class(bestfit)) ){bestfit@compute@.persist <- FALSE}
return(bestfit)
}
imxJiggle <- function(params, lbounds, ubounds, dsn, loc, scale){
if( !(dsn %in% c("rnorm","runif","rcauchy")) ){stop("unrecognized value for argument 'dsn'")}
loc <- as.numeric(loc[1])
scale <- as.numeric(scale[1])
if(scale<0){stop("negative value for argument 'scale'")}
lbounds[is.na(lbounds)] <- -Inf
ubounds[is.na(ubounds)] <- Inf
n <- length(params)
if(dsn=="rnorm"){
out <- params * rnorm(n=n,mean=loc,sd=scale) + rnorm(n=n,mean=0,sd=scale)
}
if(dsn=="runif"){
out <- params * runif(n=n,min=loc-scale,max=loc+scale) + runif(n=n,min=0-scale,max=scale)
}
if(dsn=="rcauchy"){
out <- params * rcauchy(n=n,location=loc,scale=scale) + rcauchy(n=n,location=0,scale=scale)
}
if(any(out<lbounds)){out[out<lbounds] <- lbounds[out<lbounds]}
if(any(out>ubounds)){out[out>ubounds] <- ubounds[out>ubounds]}
return(out)
}
mxJiggle <- function(model, classic=FALSE, dsn=c("runif","rnorm","rcauchy"), loc=1, scale=0.25){
warnModelCreatedByOldVersion(model)
dsn <- match.arg(dsn, c("runif","rnorm","rcauchy"))
loc <- as.numeric(loc[1])
scale <- as.numeric(scale[1])
if(scale<0){stop("negative value for argument 'scale'")}
params <- omxGetParameters(model=model,free=TRUE,fetch="values")
labels <- names(params)
lbounds <- omxGetParameters(model=model,free=TRUE,fetch="lbound")
lbounds[is.na(lbounds)] <- -Inf
ubounds <- omxGetParameters(model=model,free=TRUE,fetch="ubound")
ubounds[is.na(ubounds)] <- Inf
if(classic){
out <- params + 0.1*(params+0.5)
if(any(out<lbounds)){out[out<lbounds] <- lbounds[out<lbounds]}
if(any(out>ubounds)){out[out>ubounds] <- ubounds[out>ubounds]}
retval <- omxSetParameters(model=model,labels=labels,values=out)
}
else{
retval <- omxSetParameters(
model=model,labels=labels,
values=imxJiggle(params=params,lbounds=lbounds,ubounds=ubounds,dsn=dsn,loc=loc,scale=scale)
)
}
return(retval)
}
THFrankenmodel <- function(finalfit,bestfit,defaultComputePlan,Hesslater,SElater,doIntervals,checkHess,lackOfConstraints){
if( is.null(finalfit) || !any(Hesslater,SElater,doIntervals) || ("try-error" %in% class(finalfit)) ||
finalfit$output$status$status== -1 ){return(bestfit)}
if(defaultComputePlan){
steps <- list(GD=bestfit@compute@steps[["GD"]])
if(doIntervals){steps <- c(steps,CI=finalfit@compute@steps[["CI"]])}
if(Hesslater || SElater){
if(Hesslater){steps <- c(steps,ND=finalfit@compute@steps[["ND"]])}
if(SElater){steps <- c(steps,SE=finalfit@compute@steps[["SE"]],HQ=finalfit@compute@steps[["HQ"]])}
steps <- c(steps,RD=finalfit@compute@steps[["RD"]])
}
else{
if(checkHess){steps <- c(steps,ND=bestfit@compute@steps[["ND"]],SE=bestfit@compute@steps[["SE"]])}
steps <- c(steps,RD=bestfit@compute@steps[["RD"]])
}
steps <- c(steps,RE=bestfit@compute@steps[["RE"]])
bestfit@compute@steps <- steps
}
else{
if( doIntervals && ("MxComputeConfidenceInterval" %in% unlist(lapply(bestfit@compute@steps,class))) &&
("MxComputeConfidenceInterval" %in% unlist(lapply(finalfit@compute@steps,class))) ){
f <- which("MxComputeConfidenceInterval"==unlist(lapply(finalfit@compute@steps,class)))
t <- which("MxComputeConfidenceInterval"==unlist(lapply(bestfit@compute@steps,class)))
bestfit@compute@steps[t] <- finalfit@compute@steps[f]
}}
bestfit@output$timestamp <- finalfit@output$timestamp
if(doIntervals){
bestfit@output$confidenceIntervals <- finalfit@output$confidenceIntervals
bestfit@output$confidenceIntervalCodes <- finalfit@output$confidenceIntervalCodes
}
if(Hesslater || SElater){
bestfit@output$calculatedHessian <- finalfit@output$calculatedHessian
bestfit@output$hessian <- finalfit@output$hessian
bestfit@output$standardErrors <- finalfit@output$standardErrors
bestfit@output$infoDefinite <- finalfit@output$infoDefinite
bestfit@output$conditionNumber <- finalfit@output$conditionNumber
bestfit@output$vcov <- finalfit@output$vcov
}
if(!lackOfConstraints){
bestfit@output$constraintFunctionValues <- finalfit@output$constraintFunctionValues
bestfit@output$constraintJacobian <- finalfit@output$constraintJacobian
bestfit@output$constraintNames <- finalfit@output$constraintNames
bestfit@output$constraintRows <- finalfit@output$constraintRows
bestfit@output$constraintCols <- finalfit@output$constraintCols
}
bestfit@output$evaluations <- bestfit@output$evaluations + finalfit@output$evaluations
bestfit@output$frontendTime <- bestfit@output$frontendTime + finalfit@output$frontendTime
bestfit@output$backendTime <- bestfit@output$backendTime + finalfit@output$backendTime
bestfit@output$independentTime <- bestfit@output$independentTime + finalfit@output$independentTime
bestfit@output$wallTime <- bestfit@output$wallTime + finalfit@output$wallTime
bestfit@output$cpuTime <- bestfit@output$cpuTime + finalfit@output$cpuTime
needednames <- names(finalfit@output)[which(!(names(finalfit@output) %in% names(bestfit@output)))]
#Whether or not output elements having to do with CIs, SEs, or Hessians should be returned is governed
#by user-provided arguments to mxTryHard(); those elements are handled by code above:
needednames <- needednames[
!(needednames %in% c(
"confidenceIntervals","confidenceIntervalCodes","calculatedHessian","hessian","standardErrors","infoDefinite","conditionNumber","vcov"))
]
bestfit@output[needednames] <- finalfit@output[needednames]
bestfit@.modifiedSinceRun <- FALSE
return(bestfit)
}
#Wrapper function to imitate original implementation of mxTryHard()--attempts to find good start values:
mxTryHardOrig <- function(model, finetuneGradient=FALSE, maxMajorIter=NA, wtgcsv=c("prev","best"), silent=FALSE, ...){
return(mxTryHard(model=model,finetuneGradient=finetuneGradient,
maxMajorIter=maxMajorIter,wtgcsv=wtgcsv,silent=silent,...))
}
#Wrapper function faithful to Charlie Driver's SSCT-oriented changes:
mxTryHardctsem <- function(model, initialGradientStepSize = .00001, initialGradientIterations = 1,
initialTolerance=1e-12, jitterDistrib="rnorm", ...){
return(mxTryHard(model=model,initialGradientStepSize=initialGradientStepSize,
initialGradientIterations=initialGradientIterations,
initialTolerance=initialTolerance,jitterDistrib=jitterDistrib,...))
}
#Wrapper function that uses mxTryHard() to try to search a wide region of the parameter space:
mxTryHardWideSearch <- function(model, finetuneGradient=FALSE, jitterDistrib="rcauchy", exhaustive=TRUE,
wtgcsv="prev", ...){
return(mxTryHard(model=model,finetuneGradient=finetuneGradient,
jitterDistrib=jitterDistrib,
exhaustive=exhaustive,wtgcsv=wtgcsv,...))
}
#Wrapper function tailored toward ordinal-threshold analyses (not too sure about this function...):
mxTryHardOrdinal <- function(model, greenOK = TRUE, checkHess = FALSE, finetuneGradient=FALSE, exhaustive=TRUE,
OKstatuscodes=c(0,1,5,6), wtgcsv=c("prev","best"), ...){
return(mxTryHard(model=model,greenOK=greenOK,checkHess=checkHess,finetuneGradient=finetuneGradient,
exhaustive=exhaustive,OKstatuscodes=OKstatuscodes,wtgcsv=wtgcsv,...))
}
|