File: AlternativeApproaches.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (254 lines) | stat: -rw-r--r-- 11,729 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#
#   Copyright 2007-2019 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.


require(MASS)
require(OpenMx)

# Simulate univariate data
set.seed(100)
x <- rnorm(1000, 0, 1)
univData <- as.matrix(x)
dimnames(univData) <- list(NULL, "X")
summary(univData)
mean(univData)
var(univData)

# Simulate bivariate data
set.seed(200)
rs = .5
xy <- mvtnorm::rmvnorm(1000, c(0, 0), matrix(c(1, rs, rs, 1), 2, 2))
bivData <- xy
dimnames(bivData) <- list(NULL, c('X','Y'))
summary(bivData)
colMeans(bivData)
cov(bivData)
# hist(univData)
    
# Create ordinal and binary data from continuous data
univDataOrd <- data.frame(X=cut(univData[,1], breaks=5, ordered_result=TRUE, labels=c(0,1,2,3,4)) )
table(univDataOrd)
univDataBin <- data.frame(X=ifelse(univData[,1] >.5,1,0))
table(univDataBin)

bivDataOrd <- data.frame(bivData)
for (i in 1:2) {
	bivDataOrd[,i] <- cut(bivData[,i], breaks=5, ordered_result=TRUE, labels=c(0,1,2,3,4))
}
table(bivDataOrd[,1],bivDataOrd[,2])
bivDataBin <- data.frame(bivData)
for (i in 1:2) {
	bivDataBin[,i] <- ifelse(bivData[,i] >.5,1,0)
}
table(bivDataBin[,1],bivDataBin[,2])

# Create data objects for alternative data types
obsRawData <- mxData(observed=univData, type="raw")
# obsRawData   
obsBivData <- mxData(observed=bivData, type="raw")

univDataOrdF <- mxFactor( x=univDataOrd, levels=c(0:4) )
univDataBinF <- mxFactor( x=univDataBin, levels=c(0,1) )
bivDataOrdF  <- mxFactor( x=bivDataOrd, levels=c(0:4) )
bivDataBinF  <- mxFactor( x=bivDataBin, levels=c(0,1) )

obsRawDataOrd <- mxData(observed = univDataOrdF, type="raw")
obsRawDataBin <- mxData(observed = univDataBinF, type="raw")
obsBivDataOrd <- mxData(observed = bivDataOrdF , type="raw")
obsBivDataBin <- mxData(observed = bivDataBinF , type="raw")

univDataCov <- var(univData)
obsCovData <- mxData(observed=univDataCov, type="cov", numObs=1000)
obsCovData <- mxData(observed=var(univData), type="cov", numObs=1000)
obsCovData
 
# Fit saturated model to covariance matrices using the path method
selVars <- c("X")
manifestVars = selVars
expVariance <- mxPath(from=c("X"), arrows=2, free=TRUE, values=1, lbound=.01, labels="vX" )
expVariance

univSatModel1 <- mxModel("univSat1", manifestVars=selVars, obsCovData, expVariance, type="RAM" )
univSatModel1
univSatModel1$matrices$S

univSatFit1 <- mxRun(univSatModel1)
univSatFit1$matrices$S$values
univSatFit1[['S']]$values

EC1 <- mxEval(S, univSatFit1)
SL1 <- univSatFit1$output$SaturatedLikelihood
LL1 <- mxEval(objective, univSatFit1)
Chi1 <- LL1-SL1
EC1   
SL1
LL1
Chi1
summary(univSatFit1)
 	
# Fit saturated model to covariance matrices and means using the path method
expMean <- mxPath(from="one", to="X", arrows=1, free = TRUE, values=0, labels="mX")
expMean
obsCovMeanData <- mxData( observed=var(univData),  type="cov", numObs=1000, means=colMeans(univData) )
univSatModel1M <- mxModel(univSatModel1, name="univSat1M", expMean, obsCovMeanData )
univSatModel1M
univSatFit1M <- mxRun(univSatModel1M)
EM1m <- mxEval(M, univSatFit1M) 
summary(univSatFit1M)
    
# Fit saturated model to raw data using the path method
univSatModel2 <- mxModel(univSatModel1M, obsRawData )
univSatFit2 <- mxRun(univSatModel2)
summary(univSatFit2)
EM2 <- mxEval(M, univSatFit2) 
EC2 <- mxEval(S, univSatFit2)
LL2 <- mxEval(objective, univSatFit2)
EM2
EC2
LL2

 	
# Fit saturated model to covariance matrices using the matrix method
expCovMat <- mxMatrix( type="Symm", nrow=1, ncol=1, free=TRUE, values=1, name="expCov" )
expCovMat
expectation <- mxExpectationNormal( covariance="expCov", dimnames=selVars )
MLobjective <- mxFitFunctionML( )
MLobjective
univSatModel3 <- mxModel("univSat3", obsCovData, expCovMat, expectation, MLobjective)
univSatFit3  <- mxRun(univSatModel3)
univSatSumm3 <- summary(univSatFit3)
univSatSumm3

# Fit saturated model to covariance matrices and means using the matrix method
expMeanMat <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=0, name="expMean" )
expMeanMat
expectationM <- mxExpectationNormal( covariance="expCov", means="expMean", dimnames=selVars )
MLobjectiveM <- mxFitFunctionML( )
MLobjectiveM
univSatModel3M <- mxModel(univSatModel3, name="univSat3M", obsCovMeanData, expMeanMat, expectationM, MLobjectiveM)
univSatFit3M  <- mxRun(univSatModel3M)
univSatSumm3M <- summary(univSatFit3M)

# Fit saturated model to raw data using the matrix method
NORMexpectation <- mxExpectationNormal( covariance="expCov", means="expMean", dimnames=selVars)
FIMLobjective <- mxFitFunctionML()
FIMLobjective
univSatModel4 <- mxModel("univSat4", obsRawData, expCovMat, expMeanMat, NORMexpectation, FIMLobjective)
univSatFit4   <- mxRun(univSatModel4)
summary(univSatFit4)

# Fit saturated model to raw binary data using the matrix method
expCovMatBin <- mxMatrix( type="Stand", nrow=1, ncol=1, free=TRUE, values=.5, name="expCov" )
expMeanMatBin <- mxMatrix( type="Zero", nrow=1, ncol=1, name="expMean" )
expThreMatBin <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=0, name="expThre" )
expThreMatBin
expectationBin <- mxExpectationNormal( covariance="expCov", means="expMean", threshold="expThre", dimnames=selVars )
FIMLobjectiveBin <- mxFitFunctionML( )
univSatModel5 <- mxModel("univSat5", obsRawDataBin, expCovMatBin, expMeanMatBin, expThreMatBin, expectationBin, FIMLobjectiveBin )
univSatFit5   <- mxRun(univSatModel5)
summary(univSatFit5)
    
# Fit saturated model to raw ordinal data using the matrix method
nv  <- 1
nth <- 4
expCovMatOrd  <- mxMatrix( type="Stand", nrow=nv, ncol=nv, free=TRUE, values=.5, name="expCov" )
expMeanMatOrd <- mxMatrix( type="Zero", nrow=1, ncol=nv, name="expMean" )
expThreMatOrd <- mxMatrix( type="Full", nrow=nth, ncol=nv, free=TRUE, values=c(-1.5,-.5,.5,1.5), name="expThre" )
expThreMatOrd
expectationOrd <- mxExpectationNormal( covariance="expCov", means="expMean", threshold="expThre", dimnames=selVars )
FIMLobjectiveOrd <- mxFitFunctionML()
univSatModel6    <- mxModel("univSat6", obsRawDataOrd, expCovMatOrd, expMeanMatOrd, expThreMatOrd, expectationOrd, FIMLobjectiveOrd )
univSatFit6      <- mxRun(univSatModel6)
summary(univSatFit6)
 
# Fit saturated model to raw ordinal data using the matrix method with deviations/increments
lth              <- -1.5; ith <- 1
thValues         <- matrix(rep(c(lth,(rep(ith,nth-1)))),nrow=nth,ncol=nv)
thLBound         <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=nv)
Inc              <- mxMatrix( type="Lower", nrow=nth, ncol=nth, free=FALSE, values=1, name="Inc" )
Thre             <- mxMatrix( type="Full", nrow=nth, ncol=1, free=TRUE, values=thValues, lbound=thLBound, name="Thre" )
expThreMatOrd    <- mxAlgebra( expression= Inc %*% Thre, name="expThre" )
expectationOrd   <- mxExpectationNormal( covariance="expCov", means="expMean", threshold="expThre", dimnames=selVars )
FIMLobjectiveOrd <- mxFitFunctionML( )
univSatModel6I   <- mxModel("univSat6", obsRawDataOrd, expCovMatOrd, expMeanMatOrd, Inc, Thre, expThreMatOrd, expectationOrd, FIMLobjectiveOrd )
univSatFit6I     <- mxRun(univSatModel6I)
summary(univSatFit6I)

# Fit bivariate saturated model to raw data using the path method
nv           <- 2
selVars      <- c('X','Y')
obsBivData   <- mxData(observed=bivData, type="raw" )
expVars      <- mxPath(from=c("X", "Y"), arrows=2, free=TRUE, values=1, lbound=.01, labels=c("varX","varY") )
expCovs      <- mxPath(from="X", to="Y", arrows=2, free=TRUE, values=.2, lbound=.01, labels="covXY" )
expMeans     <- mxPath(from="one", to=c("X", "Y"), arrows=1, free=TRUE, values=.01, labels=c("meanX","meanY") )
bivSatModel1 <- mxModel("bivSat1", manifestVars=selVars, obsBivData, expVars, expCovs, expMeans, type="RAM" )
bivSatFit1   <- mxRun(bivSatModel1)
summary(bivSatFit1)

# Fit bivariate saturated model to raw data using the matrix method in the piecemeal style
expCovM   <- mxMatrix(type="Symm", nrow=nv, ncol=nv, free=TRUE, values=c(1,0.5,1), labels=c('V1','Cov','V2'), name="expCov" )
expMeanM  <- mxMatrix(type="Full", nrow=1, ncol=nv, free=TRUE, values=c(0,0), labels=c('M1','M2'), name="expMean" )
lowerTriM <- mxMatrix(type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.5, name="Chol" )
expCovMA  <- mxAlgebra(expression=Chol %*% t(Chol), name="expCov" ) 
expCovM
expMeanM
expCovMA
expectationBiv <- mxExpectationNormal( covariance="expCov", means="expMean", dimnames=selVars )
FIMLobjective <- mxFitFunctionML()
bivSatModel2  <- mxModel("bivSat2", obsBivData, lowerTriM, expCovMA, expMeanM, expectationBiv, FIMLobjective )
bivSatFit2    <- mxRun(bivSatModel2)
summary(bivSatFit2)
    
# Fit bivariate saturated model to raw data using the matrix method in the recursive style
bivSatModel3 <- mxModel("bivSat3", mxData( observed=bivData, type="raw" ) )
bivSatModel3 <- mxModel(bivSatModel3, mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.5, name="Chol" ) )
bivSatModel3 <- mxModel(bivSatModel3, mxAlgebra( expression=Chol %*% t(Chol), name="expCov" ) )
bivSatModel3 <- mxModel(bivSatModel3, mxMatrix( type="Full", nrow=1, ncol=nv, free=TRUE, values=c(0,0), labels=c('M1','M2'), name="expMean" ) )
bivSatModel3 <- mxModel(bivSatModel3, mxExpectationNormal( covariance="expCov", means="expMean", dimnames=selVars ), mxFitFunctionML() )
bivSatFit3   <- mxRun(bivSatModel3)
summary(bivSatFit3)
 
# Fit bivariate saturated model to raw data using the matrix method in the classic style
bivSatModel4 <- mxModel("bivSat4",
	 mxData(observed=bivData, type="raw"),
	 mxMatrix(type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.5, name="Chol"),
	 mxAlgebra(expression=Chol %*% t(Chol), name="expCov"),
	 mxMatrix(type="Full", nrow=1, ncol=nv, free=TRUE, values=c(0,0), name="expMean"),
	 mxExpectationNormal(covariance="expCov", means="expMean", dimnames=selVars),
	 mxFitFunctionML()
)
bivSatFit4  <- mxRun(bivSatModel4)
summary(bivSatFit4)
 
# Fit bivariate saturated model to raw binary data using the matrix method
expCovMatBin <- mxMatrix(type="Stand", nrow=nv, ncol=nv, free=TRUE, values=.5, name="expCov" )
expMeanMatBin    <- mxMatrix(type="Zero", nrow=1, ncol=nv, name="expMean" )
expThreMatBin    <- mxMatrix(type="Full", nrow=1, ncol=nv, free=TRUE, values=0, name="expThre" )
expectationBin   <- mxExpectationNormal(covariance="expCov", means="expMean", threshold="expThre", dimnames=selVars )
FIMLobjectiveBin <- mxFitFunctionML()
bivSatModel5     <- mxModel("bivSat5", obsBivDataBin, expCovMatBin, expMeanMatBin, expThreMatBin, expectationBin, FIMLobjectiveBin )
bivSatFit5       <- mxRun(bivSatModel5)
summary(bivSatFit5)
  
# Fit bivariate saturated model to raw ordinal data using the matrix method
expCovMatOrd     <- mxMatrix(type="Stand", nrow=nv, ncol=nv, free=TRUE, values=.5, name="expCov" )
expMeanMatOrd    <- mxMatrix(type="Zero", nrow=1, ncol=nv, name="expMean" )
expThreMatOrd    <- mxMatrix(type="Full", nrow=nth, ncol=nv, free=TRUE, values=c(-1.5,-.5,.5,1.5), name="expThre" )
expectationOrd   <- mxExpectationNormal(covariance="expCov", means="expMean", threshold="expThre", dimnames=selVars )
FIMLobjectiveOrd <- mxFitFunctionML()
bivSatModel6     <- mxModel("bivSat6", obsBivDataOrd, expCovMatOrd, expMeanMatOrd, expThreMatOrd, expectationOrd, FIMLobjectiveOrd )
bivSatFit6       <- mxRun(bivSatModel6)
summary(bivSatFit6)