1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
#
# Copyright 2007-2019 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------------
# Program: BivariateHeterogeneity_MatrixRaw.R
# Author: Hermine Maes
# Date: 2009.08.01
#
# ModelType: Heterogeneity
# DataType: Continuous
# Field: None
#
# Purpose:
# Bivariate Heterogeneity model to test differences in means and
# variances across multiple groups
# Matrix style model input - Raw data input
#
# RevisionHistory:
# Hermine Maes -- 2009.10.08 updated & reformatted
# Ross Gore -- 2011.06.15 added Model, Data & Field metadata
# Hermine Maes -- 2014.11.02 piecewise specification
# -----------------------------------------------------------------------------
require(OpenMx)
require(MASS)
# Load Libraries
# -----------------------------------------------------------------------------
set.seed(200)
rs=.5
xy1 <- mvtnorm::rmvnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
xy1 <- xy1[, order(apply(xy1, 2, var))[2:1]] #put the data columns in order from largest to smallest variance
# Note: Users do NOT have to re-order their data columns. This is only to make data generation the same on different operating systems: to fix an inconsistency with the mvtnorm::rmvnorm function in the MASS package.
# group 1
# --------------------------------------
set.seed(200)
rs=.4
xy2 <- mvtnorm::rmvnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
xy2 <- xy2[, order(apply(xy2, 2, var))[2:1]] #put the data columns in order from largest to smallest variance
# Note: Users do NOT have to re-order their data columns. This is only to make data generation the same on different operating systems: to fix an inconsistency with the mvtnorm::rmvnorm function in the MASS package.
# group 2
# --------------------------------------
# Simulate Data
# -----------------------------------------------------------------------------
selVars <- c("X","Y")
summary(xy1)
cov(xy1)
dimnames(xy1) <- list(NULL, selVars)
summary(xy2)
cov(xy2)
dimnames(xy2) <- list(NULL, selVars)
# Print Descriptive Statistics
# -----------------------------------------------------------------------------
chol1 <- mxMatrix( type="Lower", nrow=2, ncol=2,
free = TRUE, values=.5, labels=c("Ch11","Ch21","Ch31"),
name="chol1" )
expCov1 <- mxAlgebra( expression=chol1 %*% t(chol1), name="expCov1" )
expMean1 <- mxMatrix( type="Full", nrow=1, ncol=2,
free = TRUE, values=c(0,0), labels=c("mX1","mY1"),
name="expMean1" )
dataRaw1 <- mxData( xy1, type="raw" )
exp1 <- mxExpectationNormal( covariance="expCov1", means="expMean1", selVars)
funML <- mxFitFunctionML()
model1 <- mxModel("group1",
dataRaw1, chol1, expCov1, expMean1, exp1, funML)
chol2 <- mxMatrix( type="Lower", nrow=2, ncol=2,
free = TRUE, values=.5, labels=c("Ch12","Ch22","Ch32"),
name="chol2" )
expCov2 <- mxAlgebra( expression=chol2 %*% t(chol2), name="expCov2" )
expMean2 <- mxMatrix( type="Full", nrow=1, ncol=2,
free = TRUE, values=c(0,0), labels=c("mX2","mY2"),
name="expMean2" )
dataRaw2 <- mxData( xy2, type="raw" )
exp2 <- mxExpectationNormal( covariance="expCov2", means="expMean2", selVars)
funML <- mxFitFunctionML()
model2 <- mxModel("group2",
dataRaw2, chol2, expCov2, expMean2, exp2, funML)
fun <- mxFitFunctionMultigroup(c("group1", "group2"))
bivHetModel <- mxModel("bivariate Heterogeneity Matrix Specification",
model1, model2, fun )
bivHetFit <- mxRun(bivHetModel)
expMean1Het <- mxEval(group1.expMean1, bivHetFit)
expMean2Het <- mxEval(group2.expMean2, bivHetFit)
expCov1Het <- mxEval(group1.expCov1, bivHetFit)
expCov2Het <- mxEval(group2.expCov2, bivHetFit)
LLHet <- -2*logLik(bivHetFit)
expMean1Het; expMean2Het; expCov1Het; expCov2Het; LLHet
# Fit Heterogeneity Model
# -----------------------------------------------------------------------------
bivHomModel <- bivHetModel
bivHomModel[['group2.chol2']]$labels <- bivHomModel[['group1.chol1']]$labels
bivHomModel[['group2.expMean2']]$labels <- bivHomModel[['group1.expMean1']]$labels
bivHomFit <- mxRun(bivHomModel)
expMean1Hom <- mxEval(group1.expMean1, bivHomFit)
expMean2Hom <- mxEval(group2.expMean2, bivHomFit)
expCov1Hom <- mxEval(group1.expCov1, bivHomFit)
expCov2Hom <- mxEval(group2.expCov2, bivHomFit)
LLHom <- -2*logLik(bivHomFit)
expMean1Hom; expMean2Hom; expCov1Hom; expCov2Hom; LLHom
Chi = (LLHom - LLHet)
# LRT
rbind(LLHet, LLHom, Chi)
# =========================
# = Fit Homogeneity Model =
# =========================
omxCheckCloseEnough(LLHet, 10927.4024, .001)
omxCheckCloseEnough(c(expCov1Het), c(1.0656, 0.4752, 0.4752, 0.9292), .001)
omxCheckCloseEnough(c(expMean1Het), c(0.0582, 0.0063), .001)
omxCheckCloseEnough(c(expCov2Het), c(1.0728, 0.3739, 0.3739, 0.9283),.001)
omxCheckCloseEnough(c(expMean2Het), c(0.0596, 0.0028),.001)
omxCheckCloseEnough(LLHom, 10936.95,.001)
omxCheckCloseEnough(c(expCov1Hom), c(1.0692, 0.4245, 0.4245, 0.9287),.001)
omxCheckCloseEnough(c(expMean1Hom), c(0.0589, 0.0046),.001)
omxCheckCloseEnough(c(expCov2Hom), c(1.0692, 0.4245, 0.4245, 0.9287),.001)
omxCheckCloseEnough(c(expMean2Hom), c(0.0589, 0.0046),.001)
# Compare OpenMx results to Mx results
# (LL: likelihood; expCov: expected covariance, expMean: expected means)
# -----------------------------------------------------------------------------
|