1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
#
# Copyright 2007-2019 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------
# Program: BivariateHeterogeneity_PathRaw.R
# Author: Hermine Maes
# Date: 2009.08.01
#
# ModelType: Heterogeneity
# DataType: Continuous
# Field: None
#
# Purpose:
# Bivariate Heterogeneity model to test differences in means and variances across multiple groups
# Path style model input - Raw data input
#
# RevisionHistory:
# Hermine Maes -- 2009.10.08 updated & reformatted
# Ross Gore -- 2011.06.15 added Model, Data & Field metadata
# Hermine Maes -- 2014.11.02 piecewise specification
# -----------------------------------------------------------------------
require(OpenMx)
require(MASS)
# Load Libraries
# -----------------------------------------------------------------------------
if (0) {
set.seed(200)
rs=.5
xy1 <- mvtnorm::rmvnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
set.seed(200)
# group 1
# -------------------------------------
rs=.4
xy2 <- mvtnorm::rmvnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
# group 2
# -------------------------------------
xy1 <- round(xy1, 12)
write.csv(xy1, "data/BivariateHeterogeneity1.csv", row.names=FALSE)
xy2 <- round(xy2, 12)
write.csv(xy2, "data/BivariateHeterogeneity2.csv", row.names=FALSE)
stop("data generated")
} else {
xy1 <- as.matrix(read.csv("data/BivariateHeterogeneity1.csv"))
xy2 <- as.matrix(read.csv("data/BivariateHeterogeneity2.csv"))
}
selVars <- c("X","Y")
summary(xy1)
cov(xy1)
dimnames(xy1) <- list(NULL, selVars)
summary(xy2)
cov(xy2)
dimnames(xy2) <- list(NULL, selVars)
# Print Descriptive Statistics
# -------------------------------------
# Simulate Data
# -----------------------------------------------------------------------------
dataRaw1 <- mxData( observed=xy1, type="raw")
variances1 <- mxPath( from=selVars, arrows=2,
free = TRUE, values=1, lbound=.01, labels=c("vX1","vY1") )
covariance1 <- mxPath( from="X", to="Y", arrows=2,
free = TRUE, values=.2, lbound=.01, labels="cXY1")
means1 <- mxPath( from="one", to=selVars, arrows=1,
free = TRUE, values=c(0.1,-0.1), ubound=c(NA,0), lbound=c(0,NA),
labels=c("mX1","mY1") )
model1 <- mxModel("group1", type="RAM", manifestVars= selVars,
dataRaw1, variances1, covariance1, means1)
dataRaw2 <- mxData( observed=xy2, type="raw")
variances2 <- mxPath( from=selVars, arrows=2,
free = TRUE, values=1, lbound=.01, labels=c("vX2","vY2") )
covariance2 <- mxPath( from="X", to="Y", arrows=2,
free = TRUE, values=.2, lbound=.01, labels="cXY2")
means2 <- mxPath( from="one", to=selVars, arrows=1,
free = TRUE, values=c(0.1,-0.1), ubound=c(NA,0), lbound=c(0,NA),
labels=c("mX2","mY2") )
model2 <- mxModel("group2", type="RAM", manifestVars= selVars,
dataRaw2, variances2, covariance2, means2)
#h12 <- mxAlgebra( group1.fitfunction + group2.fitfunction, name="h12" )
#funML <- mxFitFunctionAlgebra("h12")
fun <- mxFitFunctionMultigroup(c("group1", "group2"))
bivHetModel <- mxModel("bivariate Heterogeneity Path Specification",
model1, model2, fun )
bivHetFit <- mxRun(bivHetModel)
hetExp <- mxGetExpected(bivHetFit, c('covariance', 'means'))
EM1Het <- hetExp$group1$means
EM2Het <- hetExp$group2$means
EC1Het <- hetExp$group1$covariance
EC2Het <- hetExp$group2$covariance
LLHet <- -2*logLik(bivHetFit)
EM1Het; EM2Het; EC1Het; EC2Het; LLHet
# Fit Heterogeneity Model
# -----------------------------------------------------------------------------
bivHomModel <- bivHetModel
bivHomModel[['group2.S']]$labels <- bivHomModel[['group1.S']]$labels
bivHomModel[['group2.M']]$labels <- bivHomModel[['group1.M']]$labels
bivHomFit <- mxRun(bivHomModel)
homExp <- mxGetExpected(bivHomFit, c('covariance', 'means'))
EM1Hom <- homExp$group1$means
EM2Hom <- homExp$group2$means
EC1Hom <- homExp$group1$covariance
EC2Hom <- homExp$group2$covariance
LLHom <- -2*logLik(bivHomFit)
EM1Hom; EM2Hom; EC1Hom; EC2Hom; LLHom
Chi <- LLHom-LLHet
LRT <- rbind(LLHet,LLHom,Chi)
LRT
# Fit Homnogeneity Model
# -----------------------------------------------------------------------------
omxCheckCloseEnough(LLHet, 10944.8728, .001)
omxCheckCloseEnough(c(EC1Het), c(1.0093, 0.4813, 0.4813, 0.9935), .001)
omxCheckCloseEnough(c(EM1Het), c(0.0321, -0.0049), .001)
omxCheckCloseEnough(c(EC2Het), c(1.0123, 0.3799, 0.3799, 0.9957),.001)
omxCheckCloseEnough(c(EM2Het), c(0.0334, -0.0071),.001)
omxCheckCloseEnough(LLHom, 10954.3676,.001)
omxCheckCloseEnough(c(EC1Hom), c(1.0108, 0.4306, 0.4306, 0.9946),.001)
omxCheckCloseEnough(c(EM1Hom), c(0.0328, -0.006),.001)
omxCheckCloseEnough(c(EC2Hom), c(1.0108, 0.4306, 0.4306, 0.9946),.001)
omxCheckCloseEnough(c(EM2Hom), c(0.0328, -0.006),.001)
# Compare OpenMx results to Mx results
# (LL: likelihood; expCov: expected covariance, expMean: expected means)
# -----------------------------------------------------------------------------
|