1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
#
# Copyright 2007-2019 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------
# Program: BivariateSaturated_MatrixCovCholesky.R
# Author: Hermine Maes
# Date: 2009.08.01
#
# ModelType: Saturated
# DataType: Continuous
# Field: None
#
# Purpose:
# Bivariate Saturated model to estimate means and (co)variances
# using Cholesky Decomposition
# Matrix style model input - Covariance matrix data input
#
# RevisionHistory:
# Hermine Maes -- 2009.10.08 updated & reformatted
# Ross Gore -- 2011.06.15 added Model, Data & Field metadata
# -----------------------------------------------------------------------
#options(error = utils::recover)
require(OpenMx)
require(MASS)
# Load Libraries
# -----------------------------------------------------------------------------
set.seed(200)
rs=.5
xy <- mvtnorm::rmvnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
testData <- xy
testData <- testData[, order(apply(testData, 2, var))[2:1]] #put the data columns in order from largest to smallest variance
# Note: Users do NOT have to re-order their data columns. This is only to make data generation the same on different operating systems: to fix an inconsistency with the mvtnorm::rmvnorm function in the MASS package.
selVars <- c("X","Y")
dimnames(testData) <- list(NULL, selVars)
summary(testData)
cov(testData)
# Simulate Data
# -----------------------------------------------------------------------------
bivSatModel5 <- mxModel("bivSat5",
mxMatrix(
type="Lower",
nrow=2,
ncol=2,
free = TRUE,
values=.5,
name="Chol"
),
mxAlgebra(
expression=Chol %*% t(Chol),
name="expCov"
),
mxData(
observed=cov(testData),
type="cov",
numObs=1000
),
mxFitFunctionML(),mxExpectationNormal(
covariance="expCov",
dimnames=selVars
)
)
bivSatFit5 <- mxRun(bivSatModel5)
EC5 <- mxEval(expCov, bivSatFit5)
LL5 <- mxEval(objective,bivSatFit5)
SL5 <- summary(bivSatFit5)$SaturatedLikelihood
Chi5 <- LL5-SL5
# example 5: Saturated Model with Cov Matrices and Matrix-Style Input
# -----------------------------------------------------------------------------
bivSatModel5m <- mxModel("bivSat5m",
mxMatrix(
type="Lower",
nrow=2,
ncol=2,
free = TRUE,
values=.5,
name="Chol"
),
mxAlgebra(
expression=Chol %*% t(Chol),
name="expCov"
),
mxMatrix(
type="Full",
nrow=1,
ncol=2,
free = TRUE,
values=c(0,0),
name="expMean"
),
mxData(
observed=cov(testData),
type="cov",
numObs=1000,
means=colMeans(testData)
),
mxFitFunctionML(),mxExpectationNormal(
covariance="expCov",
means="expMean",
dimnames=selVars
)
)
bivSatFit5m <- mxRun(bivSatModel5m)
EM5m <- mxEval(expMean, bivSatFit5m)
EC5m <- mxEval(expCov, bivSatFit5m)
LL5m <- mxEval(objective,bivSatFit5m);
SL5m <- summary(bivSatFit5m)$SaturatedLikelihood
Chi5m <- LL5m-SL5m
# example 5m: Saturated Model with Cov Matrices & Means and Matrix-Style Input
# -----------------------------------------------------------------------------
omxCheckCloseEnough(Chi5,-0.001,.001)
omxCheckCloseEnough(c(EC5),c(1.065, 0.475, 0.475, 0.929),.001)
# 5:CovMat Cholesky
# -------------------------------------
omxCheckCloseEnough(Chi5m,-0.001,.001)
omxCheckCloseEnough(c(EC5m),c(1.065, 0.475, 0.475, 0.929),.001)
omxCheckCloseEnough(c(EM5m),c(0.058, 0.006),.001)
# 5m:CovMPat Cholesky
# -------------------------------------
# Compare OpenMx results to Mx results
# (LL: likelihood; EC: expected covariance, EM: expected means)
# -----------------------------------------------------------------------------
|