File: LDE.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (163 lines) | stat: -rw-r--r-- 4,908 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# ---------------------------------------------------------------------
# Program: LDE_2ndOrder_OneIndicator_5D.R
#  Author: Steven Boker and Pascal Deboeck
#    Date: Sat Sep  5 12:23:32 EDT 2009
#
# This program runs an example single indicator 2nd order LDE model
#   with 5 time-delay columns in the embedded state space matrix
#
#
# ---------------------------------------------------------------------
# Revision History
#    -- Sat Sep  5 12:23:32 EDT 2009
#      Created untitled.
#
# ---------------------------------------------------------------------

# ---------------------------------------------------------------------
# Variables 
# ---------------------------------------------------------------------
#
# ---------------------------------------------------------------------

# ----------------------------------
# Read libraries and set options.

require(OpenMx)

# ----------------------------------
# Read demo data.

data(Oscillator)

plot(Oscillator[,1], type='l')


# ----------------------------------
# Set constants.

tau <- 1     # The lag between subsequent columns in the embedded matrix
deltaT <- .3  # The amount of time elapsed between subsequent observations
embedD <- 7  # The number of columns in the time-delay embedded matrix

# ----------------------------------
# Time delay embed the demo data.

Embed <- function(x, E, tau) {  # create a time delay matrix from x with embedding dimension E and lag tau
	len <- length(x)
	out <- x[1:(len-(E*tau)+tau)]
	for(i in 2:E) { out <- cbind(out,x[(1+((i-1)*tau)):(len-(E*tau)+(i*tau))]) }
	return(out)
}
	
embeddedOscillator <- Embed(Oscillator$x, embedD, tau)
dimnames(embeddedOscillator) <- list(NULL, paste("x", 1:embedD, sep=""))

# ----------------------------------
# Create the fixed LDE loading matrix.

L1 <- rep(1,embedD)
L2 <- c(1:embedD)*tau*deltaT-mean(c(1:embedD)*tau*deltaT)
L3 <- (L2^2)/2
LDE.Original <- cbind(L1,L2,L3)

# ----------------------------------
# Create 2nd order LDE model.

manifestVars <- dimnames(embeddedOscillator)[[2]]
latentVars <- paste0('d', 0:(ncol(LDE.Original)-1), 'y')

ldeModel1 <- mxModel("LDE_Model_1",
    mxMatrix("Full",  
        values=LDE.Original, 
        free=FALSE, 
        name="L", 
        byrow=TRUE,
        dimnames=list(manifestVars, latentVars)
    ),
    mxMatrix("Full", 3, 3, 
        values=c(  0,  0, 0,
                   0,  0, 0,
                 -.2,-.2, 0), 
        free=c(FALSE,FALSE,FALSE,
               FALSE,FALSE,FALSE,
	       TRUE, TRUE,FALSE),
	lbound=-2,
	ubound=2,
        name="A",
        byrow=TRUE,
        dimnames=list(latentVars, latentVars)
    ),
    mxMatrix("Symm", 3, 3,
        values=c(.8, -.1, 0,
                  -.1,.8, 0,
                  0, 0,.8), 
        free=c( TRUE, TRUE, FALSE,
               TRUE, TRUE,FALSE,
               FALSE,FALSE, TRUE), 
        name="S", 
        byrow=TRUE,
        lbound=c(0.000001, -10000, 0.000001,
                 -10000, 0.000001, 0.000001,
                 0.000001, 0.000001, 0.000001),
        dimnames=list(latentVars, latentVars)
    ),
    mxMatrix("Diag", embedD, embedD, 
        values=.2, 
        free=TRUE, 
        name="U",
        lbound=0.000001,
        dimnames=list(manifestVars, manifestVars)
    ),
    #mxExpectationNormal(cov="R"),
    mxExpectationLISREL(LY='L', BE='A', PS='S', TE='U'),
    mxFitFunctionML(),
    mxData(cov(embeddedOscillator),
        type="cov", 
        numObs=dim(embeddedOscillator)[1]
    )
)

# ----------------------------------
# Fit the LDE model and examine the summary results.

ldeModel1Fit <- mxRun(ldeModel1)

summary(ldeModel1Fit)


# ----------------------------------
# Specify the same model, but add means
#  and use raw data

ldeModel2 <- mxModel(ldeModel1,
    mxMatrix('Full', name='M', nrow=nrow(LDE.Original), ncol=1, dimnames=list(manifestVars, 'one'), free=TRUE),
    mxMatrix('Full', name='N', nrow=ncol(LDE.Original), ncol=1, dimnames=list(latentVars, 'one')),
    mxExpectationLISREL(LY='L', BE='A', PS='S', TE='U', TY='M', AL='N'),
    mxData(embeddedOscillator, 'raw')
)


# ----------------------------------
# Fit the raw data model with means

ldeModel2Fit <- mxRun(ldeModel2)

summary(ldeModel2Fit)



# ----------------------------------
# Check that parameter estimates are good

a <- c(-0.292118167, -0.108630533,  0.142931593, -0.012848260,  0.044742836,
        0.011126886,  0.007458037,  0.008658088,  0.008505263,  0.008332743,
        0.008255869,  0.008158013,  0.007594966)

b <- c(-0.292118480, -0.108629216,  0.142931822, -0.012848367,  0.044742889,
        0.011126912,  0.007458019,  0.008658099,  0.008505253,  0.008332736,
        0.008255873,  0.008158008,  0.007594939,  0.023681632,  0.011287883,
       -0.002021944, -0.012821669, -0.026326066, -0.035579923, -0.040730626)
omxCheckCloseEnough(coef(ldeModel1Fit), a, 0.001)
omxCheckCloseEnough(coef(ldeModel2Fit), b, 0.001)