File: LatentGrowthCurveModel_PathRaw_ModelRec.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (142 lines) | stat: -rw-r--r-- 3,988 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#
#   Copyright 2007-2019 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

# -----------------------------------------------------------------------------
# Program: LatentGrowthModel_PathRaw_ModelRec.R  
# Author: Michael Hunter
# Date: 2011.07.22
#
# ModelType: Growth Curve
# DataType: Longitudinal
# Field: None
#
# Purpose: 
#      Latent Growth model to estimate means and 
#      (co)variances of slope and intercept
#      Path style model input - Raw data input
#      Recursive
#
# RevisionHistory:
#      Michael Hunter --  2011.07.22 Took template from Ryne Estabrook's LatentGrowthModel_PathRaw.R
#
# -----------------------------------------------------------------------------

require(OpenMx)
# Load Library
# -----------------------------------------------------------------------------

data(myLongitudinalData)
# Prepare Data
# -----------------------------------------------------------------------------

growthCurveModel <- mxModel(
    name="Linear Growth Curve Model Path Specification", 
    type="RAM",
    mxData(
    	observed=myLongitudinalData,
        type="raw"
    ),
    manifestVars=c("x1","x2","x3","x4","x5"),
    latentVars=c("intercept","slope")
)

growthCurveModel <- mxModel(
    model = growthCurveModel,
    # residual variances
    mxPath(
    	from=c("x1","x2","x3","x4","x5"), 
        arrows=2,
        free=TRUE, 
        values = c(1, 1, 1, 1, 1),
        labels=c("residual","residual","residual","residual","residual")
    )
)

growthCurveModel <- mxModel(
    model = growthCurveModel,
    # latent variances and covariance
    mxPath(
    	from=c("intercept","slope"), 
        arrows=2,
		connect="unique.pairs",
        free=TRUE, 
        values=c(1, 1, 1),
        labels=c("vari", "cov", "vars")
    )
)

growthCurveModel <- mxModel(
    model = growthCurveModel,
    # intercept loadings
    mxPath(
    	from="intercept",
        to=c("x1","x2","x3","x4","x5"),
        arrows=1,
        free=FALSE,
        values=c(1, 1, 1, 1, 1)
    )
)

growthCurveModel <- mxModel(
    model= growthCurveModel,
    # slope loadings
    mxPath(
    	from="slope",
        to=c("x1","x2","x3","x4","x5"),
        arrows=1,
        free=FALSE,
        values=c(0, 1, 2, 3, 4)
    )
)

growthCurveModel <- mxModel(
    model = growthCurveModel,
    # manifest means
    mxPath(from="one",
        to=c("x1", "x2", "x3", "x4", "x5"),
        arrows=1,
        free=FALSE,
        values=c(0, 0, 0, 0, 0)
    )
)

growthCurveModel <- mxModel(
    model = growthCurveModel,
    # latent means
    mxPath(from="one",
        to=c("intercept", "slope"),
        arrows=1,
        free=TRUE,
        values=c(1, 1),
        labels=c("meani", "means")
    )
)

# -----------------------------------------------------------------------------
      
growthCurveFit <- mxRun(growthCurveModel, suppressWarnings=TRUE)

summary(growthCurveFit)
coef(growthCurveFit)


omxCheckCloseEnough(coef(growthCurveFit)[["meani"]], 9.930, 0.01)
omxCheckCloseEnough(coef(growthCurveFit)[["means"]], 1.813, 0.01)
omxCheckCloseEnough(coef(growthCurveFit)[["vari"]], 3.886, 0.01)
omxCheckCloseEnough(coef(growthCurveFit)[["vars"]], 0.258, 0.01)
omxCheckCloseEnough(coef(growthCurveFit)[["cov"]], 0.460, 0.01)
omxCheckCloseEnough(coef(growthCurveFit)[["residual"]], 2.316, 0.01)
# Compare OpenMx results to Mx results 
# -----------------------------------------------------------------------------