1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
#
# Copyright 2007-2019 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#------------------------------------------------------------------------------
# Author: Michael D Hunter
# Filename: RObjectiveLISRELFactorRegression.R
# Date: 2011.06.30
# Purpose: To demonstrate an example of LISREL model
# specification in OpenMx as an mxFitFunctionR.
# Later there will be a model of type LISREL.
# Revision History:
# Michael Hunter -- 2011.06.30 Created File
# Michael Hunter -- 2011.07.21 Added extensive comments, contributed to svn
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# The source of the model and the data presented here is
# Joreskog, K. G., & Sorbom, D. (1982). Recent developments in
# structural equation modeling. Journal of Marketing Research,
# 19(4), p. 404-416.
# The BibTeX is
#$article{ ,
# Author = {Karl G {J\"{o}reskog} and Dag S\"{o}rbom},
# Journal = {Journal of Marketing Research},
# Month = {November},
# Number = {4},
# Pages = {404-416},
# Title = {Recent Developments in Structural Equation Modeling},
# Volume = {19},
# Year = {1982}
# }
# The data occurs on page 409 in Table 2
# The model is example 1, on pages 409-411.
#------------------------------------------------------------------------------
# Load the OpenMx package
library(OpenMx)
#options(error = utils::recover)
#------------------------------------------------------------------------------
# On LISREL
#
# LISREL requires specifying 9 matrices. These are
# LambdaX, LambdaY, ThetaDelta, ThetaEpsilon, ThetaDeltaEpsilon,
# Beta, Gamma, Psi, and Phi
#
# The extended LISREL model (a model including means) requires
# specifying 4 additional matrices, for a total of 13. These are
# Alpha, Kappa, TauX, and TauY.
#
# Here is a brief description of the matrices
# LambdaX (abbreviated LX): matrix of exogenous factor loadings
# LambdaY (abbreviated LY): matrix of endogenous factor loadings
# ThetaDelta (abbreviated TD): residual covariance matrix of exogenous manifest variables (often diagonal)
# ThetaEpsilon (abbreviated TE): residual covariance matrix of endogenous manifest variables (often diagonal)
# ThetaDeltaEpsilon (abbreviated TH): residual covariance matrix of exogenous manifest variables with endogenous manifest variables (often zero)
# Beta (abbreviated BE): matrix of regression weights of the endogenous latent variables predicting themselves
# Gamma (abbreviated GA): matrix of regression weights of the exogenous latent variables predicting the endogenous latent variables
# Psi (abbreviated PS): residual covariance matrix of the endogenous latent variables
# Phi (abbreviated PH): covariance matrix of the exogenous latent variables (factor covariance matrix)
# Alpha (abbreviated AL): relates to means of endogenous latent variables
# Kappa (abbreviated KA): means of the exogenous latent variables
# TauX (abbreviated TX): residual means of the exogenous manifest variables
# TauY (abbreviated TY): residual means of the endogenous manifest variables
#------------------------------------------------------------------------------
# Define the function to perform the LISREL optimization
#--------------------------------------
# Author: Michael D Hunter
# Filename: funcLISREL.R
# Date: 2011.06.30
# Purpose: To define a number of helper functions to allow
# OpenMx to more easily estimate models under the LISREL
# specification. This implementation uses an mxFitFunctionR
# function. Later these functions will be translated and
# moved to the C backend for an mxModel of type LISREL
# as opposed to RAM.
#--------------------------------------
#--------------------------------------
# Take in the Lambda matrices of factor loadings
# and put them together in blocks to form one
# larger Lambda matrix
lisrelBlockLambda <- function(LambdaY, LambdaX){
upper <- matrix(0, nrow=nrow(LambdaY), ncol=ncol(LambdaX))
lower <- matrix(0, nrow=nrow(LambdaX), ncol=ncol(LambdaY))
ret <- rbind(cbind(LambdaY, upper),
cbind(lower, LambdaX)
)
return(ret)
}
#--------------------------------------
# Take in the Theta matrices of measurement error covariances
# and put them together in blocks to form one larger
# Theta matrix
lisrelBlockTheta <- function(ThetaEpsilon, ThetaDelta, ThetaDeltaEpsilon){
ret <- rbind(cbind(ThetaEpsilon, t(ThetaDeltaEpsilon)),
cbind(ThetaDeltaEpsilon, ThetaDelta)
)
return(ret)
}
#--------------------------------------
# Take in the regression matrices (Beta and Gamma),
# the covariance matrix of the exogenous variables (Phi),
# and the latent structural error covariance matrix (Psi)
# then block them together to form a matrix I'm calling W
lisrelBlockW <- function(Beta, Gamma, Phi, Psi){
I <- diag(1, dim(Beta)[1])
A <- solve(I - Beta)
AG <- A %*% Gamma
block1 <- AG %*% Phi %*% t(AG) + A %*% Psi %*% t(A)
block2 <- AG %*% Phi
ret <- rbind(cbind(block1, block2),
cbind(t(block2), Phi)
)
return(ret)
}
#--------------------------------------
# Take all of the LISREL matrices and block them and
# produce the model implied (aka expected) covariance
# matrix (here called miCov)
lisrelCov <- function(LambdaX, LambdaY, ThetaEpsilon, ThetaDelta, ThetaDeltaEpsilon, Beta, Gamma, Phi, Psi){
Lambda <- lisrelBlockLambda(LambdaY, LambdaX)
Theta <- lisrelBlockTheta(ThetaEpsilon, ThetaDelta, ThetaDeltaEpsilon)
W <- lisrelBlockW(Beta, Gamma, Phi, Psi)
miCov <- Lambda %*% W %*% t(Lambda) + Theta
return(miCov)
}
#--------------------------------------
# Take the model implied covariance matrix and the observed covariance
# matrix, and produce a value that can be minimized to produce the
# maximum likelihood estimates of the parameters
# Objective Function
lisrelML <- function(miCov, obsCov){
ret <- suppressWarnings(log(det(miCov))) + tr(obsCov %*% solve(miCov))
return(ret)
}
#--------------------------------------
# Rescale the output of lisrelML to official log likelihood units
# x is the output of lisrelML
lisrelMLRescale <- function(x, obsCov){
ret <- x - suppressWarnings(log(det(obsCov))) - ncol(obsCov)
return(ret)
}
#--------------------------------------
# Produce the Unweighted Least Squares (ULS) value that can be minimized
# to make ULS estimates of the parameters
# Objective Function
lisrelULS <- function(miCov, obsCov){
ret <- tr((obsCov-miCov)^2)/2
return(ret)
}
#--------------------------------------
# Take in an mxModel object and produce a function value to be minimized
# to produce maximum likelihood estimates of the free parameters.
# mxFitFunctionR function
lisrelCovMx <- function(model, state){
expectedCov <- lisrelCov(
model$LambdaX$values,
model$LambdaY$values,
model$ThetaEpsilon$values,
model$ThetaDelta$values,
model$ThetaDeltaEpsilon$values,
model$Beta$values,
model$Gamma$values,
model$Phi$values,
model$Psi$values)
ret <- lisrelML(expectedCov, model$data$observed)
return(ret)
}
#------------------------------------------------------------------------------
# Define the data to be fit
obsCor <- matrix(c(
1.00, 0.43, 0.52, 0.54, 0.83,
0.43, 1.00, 0.67, 0.45, 0.45,
0.52, 0.67, 1.00, 0.63, 0.56,
0.54, 0.45, 0.63, 1.00, 0.52,
0.83, 0.45, 0.56, 0.52, 1.00),
nrow=5, ncol=5, byrow=TRUE
)
# Define the exogenous and endogenous variables
endInd <- c(1, 5) #Indexes of the endogenous/dependent variables
exoInd <- c(2:4) #Indexes of the exogenous/independent variables
# Correlation matrix rearranged into separate blocks of
# endogenous and exogenous variables
gObsCor <- cbind(rbind(obsCor[endInd, endInd], obsCor[exoInd, endInd]), rbind(obsCor[endInd, exoInd], obsCor[exoInd, exoInd]) )
#------------------------------------------------------------------------------
# Specify the model
numManExo <- length(exoInd)
numManEnd <- length(endInd)
numLatExo <- 1
numLatEnd <- 2
Jor82Ex1 <- mxModel(
name='LISREL 5 Model Example 1 from 1982 Paper',
mxData(observed=gObsCor, type='cor', numObs=1000), # ADJUST HERE
mxMatrix(
name='LambdaY',
type='Iden',
free = FALSE,
nrow=numManEnd,
ncol=numLatEnd
),
mxMatrix(
name='LambdaX',
nrow=numManExo,
ncol=numLatExo,
free = TRUE,
values=c(.8, .8, .8),
labels=c('lam1', 'lam2', 'lam3')
),
mxMatrix(
name='Beta',
nrow=numLatEnd,
ncol=numLatEnd,
free=c(F, T, F, F),
values=c(0, .8, 0, 0),
labels=c(NA, 'bet', NA, NA)
),
mxMatrix(
name='Gamma',
nrow=numLatEnd,
ncol=numLatExo,
free = TRUE,
values=c(.8, 1.8),
labels=c('gam1', 'gam2')
),
mxMatrix(
name='Psi',
nrow=numLatEnd,
ncol=numLatEnd,
free=c(T, F, F, T),
values=c(.8, 0, 0, 1.8),
labels=c('zet1sq', NA, NA, 'zet2sq'),
lbound=1e-6
),
mxMatrix(
name='Phi',
nrow=numLatExo,
ncol=numLatExo,
free = FALSE,
values=1
),
mxMatrix(
name='ThetaEpsilon',
nrow=numManEnd,
ncol=numManEnd,
free = FALSE,
values=0
),
mxMatrix(
name='ThetaDelta',
type='Symm',
nrow=numManExo,
ncol=numManExo,
free=c(T, F, T, F, T, F, T, F, T),
values=c(.8, 0, .1, 0, .8, 0, .1, 0, .8),
labels=c('del1', NA, 'del13', NA, 'del2', NA, 'del13', NA, 'del3')
),
mxMatrix(
name='ThetaDeltaEpsilon',
nrow=numManExo,
ncol=numManEnd,
free = FALSE,
values=0
),
mxFitFunctionR(lisrelCovMx)
)
Jor82Ex1$ThetaDelta$lbound[diag(numManExo)==1] <- 1e-6
#------------------------------------------------------------------------------
# Fit the model
ex1Run <- mxRun(Jor82Ex1)
summary(ex1Run)
#------------------------------------------------------------------------------
# Fitted Results
# The paper (Joreskog & Sorbom, 1982) reports correlation sacross
# variables and standard deviations within variables
# for the residual covariance matrices.
# This takes a covariance matrix (the matrix estimated,
# turns it into a correlation matrix with the square root of
# the variances (i.e. the standard deviations) down the diagonal.
TDf <- cov2cor(ex1Run$ThetaDelta$values)
diag(TDf) <- sqrt(diag(ex1Run$ThetaDelta$values))
PSf <- cov2cor(ex1Run$Psi$values)
diag(PSf) <- sqrt(diag(ex1Run$Psi$values))
# The other matrices are reported raw.
LXf <- ex1Run$LambdaX$values
GAf <- ex1Run$Gamma$values
BEf <- ex1Run$Beta$values
#------------------------------------------------------------------------------
# Published Results
TDp <- matrix(c(0.64, 0, -0.31, 0, 0.52, 0, -0.31, 0, 0.65), nrow=3, ncol=3)
LXp <- matrix(c(0.76, 0.85, 0.76), nrow=3, ncol=1)
GAp <- matrix(c(0.63, 0.21), nrow=2, ncol=1)
BEp <- matrix(c(0, 0.70, 0, 0), nrow=2, ncol=2)
PSp <- diag(c(0.78, 0.53))
#------------------------------------------------------------------------------
# Compare Fitted and Published Results
# Note: Because the published paper only reports
# two decimals of precision, the comparison can only
# be made down to two decimal places (i.e. epsilon=0.01)
omxCheckCloseEnough(TDf, TDp, epsilon=0.01)
omxCheckCloseEnough(LXf, LXp, epsilon=0.01)
omxCheckCloseEnough(GAf, GAp, epsilon=0.01)
omxCheckCloseEnough(BEf, BEp, epsilon=0.01)
omxCheckCloseEnough(PSf, PSp, epsilon=0.01)
|