File: RowObjectiveSimpleExamples.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (153 lines) | stat: -rw-r--r-- 4,640 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#
#   Copyright 2007-2019 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.


#------------------------------------------------
# Author: Michael Hunter
# Filename: rowObjectiveSimpleExamples.R
# Purpose: Test the mxFitFunctionRow Function
# Revision History
#  Mon Apr 11 20:54:30 EDT 2011 -- Created file
#  2011.06.17 -- Submitted file to SVN Repository
#------------------------------------------------


#------------------------------------------------
library(OpenMx)

#------------------------------------------------
# Model that adds two data columns row-wise, then sums that column
# Notice no optimization is performed here.
set.seed(159)
xdat <- data.frame(a=rnorm(10, mean=4.2), b=1:10) # Make data set

amod <- mxModel(	
	name='Row Model',
	mxData(observed=xdat, type='raw'),
	mxAlgebra(sum(filteredDataRow), name = 'rowAlgebra'),
	mxAlgebra(sum(rowResults), name = 'reduceAlgebra'),
	mxFitFunctionRow(
		rowAlgebra='rowAlgebra',
		reduceAlgebra='reduceAlgebra',
		dimnames=c('a','b'))
)

amodFit <- mxRun(amod)
mxEval(objective, amodFit)
sum(xdat)

omxCheckCloseEnough(mxEval(objective, amodFit), sum(xdat), epsilon=10^(-5))


#------------------------------------------------
# Model that finds the parameters that minimizes the sum of the
#  squared difference between the parameters and a data rows.
# This is a least squares estimation of the means of the columns.
xdat

bmod <- mxModel(
	name='Estimation Row Model',
	mxData(observed=xdat, type='raw'),
	mxMatrix(values=.75, ncol=2, nrow=1, free=TRUE, name='M'),
	mxAlgebra((filteredDataRow-M)%^%2, name='rowAlgebra'),
	mxAlgebra(sum(rowResults), name='reduceAlgebra'),
	mxFitFunctionRow(
		rowAlgebra='rowAlgebra',
		reduceAlgebra='reduceAlgebra',
		dimnames=c('a', 'b'))
)

bmodFit <- mxRun(bmod)
bmodFit$M$values
colMeans(xdat)

omxCheckCloseEnough(as.vector(mxEval(M, bmodFit)), as.vector(colMeans(xdat)), epsilon=10^(-5))



#------------------------------------------------
# Model that finds the parameters that minimizes the sum of the
#  squared difference between the parameters and a data rows.
# This is a least squares estimation of the means of the columns,
#  taking into account missingness.
# This script fails even when the NAs are removed.
#  It seems to be a problem with the omxSelect*.

# Comment out the next two lines to test the use of 
#  omxSelectCols when there is no missingness.
xdat$a[3] <- NA
xdat$b[5] <- NA
xdat


cmod <- mxModel(
	name='Estimation Row Model with Missingness',
	mxData(observed=xdat, type='raw'),
	mxMatrix(values=.75, ncol=2, nrow=1, free=TRUE, name='M'),
	mxAlgebra(omxSelectCols(M, existenceVector), name='fM'),
	mxAlgebra((filteredDataRow-fM)%^%2, name='rowAlgebra'),
	mxAlgebra(sum(rowResults), name='reduceAlgebra'),
	mxFitFunctionRow(
		rowAlgebra='rowAlgebra',
		reduceAlgebra='reduceAlgebra',
		dimnames=c('a', 'b'))
)

cmodFit <- mxRun(cmod)
cmodFit$M$values
colMeans(xdat, na.rm=T)

omxCheckCloseEnough(as.vector(mxEval(M, cmodFit)), as.vector(colMeans(xdat, na.rm=T)), epsilon=10^(-4))




#------------------------------------------------
set.seed(135)
nobs <- 13
adat <- data.frame(x=rnorm(nobs))

dmod <- mxModel(
	name='I will run fast on OpenMx',
	mxMatrix(name='A', nrow=nobs, ncol=1, free = TRUE, values=0.1),
	mxMatrix(name='X', nrow=nobs, ncol=1, free = FALSE, values=as.matrix(adat)),
	mxAlgebra((X-A) %^% 2, name='Row'),
	mxAlgebra(sum(Row), name='Red'),
	mxFitFunctionAlgebra('Red')
)

dmodRun <- mxRun(dmod) # runs super fast := 0.07 sec
omxCheckCloseEnough(mxEval(A, dmodRun), as.matrix(adat), epsilon=10^(-5))



#------------------------------------------------
robj1 <- function(model, state) {
	a <- model$A$values
	x <- model$X$values
	return(sum((x - a) ^ 2))
}

emod <- mxModel(
	name='I will run slow on OpenMx',
	mxMatrix(name='A', nrow=nobs, ncol=1, free = TRUE, values=0.1),
	mxMatrix(name='X', nrow=nobs, ncol=1, free = FALSE, values=as.matrix(adat)),
	mxFitFunctionR(robj1)
)

emodRun <- mxRun(emod) # runs super slow := 10.5 sec
omxCheckCloseEnough(mxEval(A, emodRun), as.matrix(adat), epsilon=10^(-5))