1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
#
# Copyright 2007-2019 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------------
# Program: UnivariateSaturated_PathCov.R
# Author: Hermine Maes
# Date: 2009.08.01
#
# ModelType: Saturated
# DataType: Simulated Continuous
# Field: None
#
# Purpose:
# Univariate Saturated model to estimate means and variances
# Path style model input - Covariance matrix data input
#
# RevisionHistory:
# Hermine Maes -- 2009.10.08 updated & reformatted
# Ross Gore -- 2011.06.06 added Model, Data & Field metadata
# -----------------------------------------------------------------------------
require(OpenMx)
# Load Library
# -----------------------------------------------------------------------------
set.seed(100)
x <- rnorm (1000, 0, 1)
testData <- as.matrix(x)
selVars <- c("X")
dimnames(testData) <- list(NULL, selVars)
summary(testData)
colMeans(testData)
var(testData)
# Simulate Data
# -----------------------------------------------------------------------------
univSatModel1 <- mxModel("univSat1",
manifestVars= selVars,
mxPath(
from=c("X"),
arrows=2,
free = TRUE,
values=1,
lbound=.01,
labels="vX"
),
mxData(
observed=var(testData),
type="cov",
numObs=1000
),
type="RAM"
)
univSatFit1 <- mxRun(univSatModel1)
EC1 <- mxEval(S, univSatFit1)
LL1 <- mxEval(objective, univSatFit1)
SL1 <- summary(univSatFit1)$SaturatedLikelihood
Chi1 <- LL1 - SL1
# example 1: Saturated Model with Cov Matrices and Path-Style Input
# -----------------------------------------------------------------------------
univSatModel1m <- mxModel("univSat1m",
manifestVars= selVars,
mxPath(
from=c("X"),
arrows=2,
free = TRUE,
values=1,
lbound=.01,
labels="vX"
),
mxPath(
from="one",
to="X",
arrows=1,
free = TRUE,
values=0,
labels="mX"
),
mxData(
observed=var(testData),
type="cov",
numObs=1000,
means=colMeans(testData)
),
type="RAM"
)
univSatFit1m <- mxRun(univSatModel1m)
EM1m <- mxEval(M, univSatFit1m)
EC1m <- mxEval(S, univSatFit1m)
LL1m <- mxEval(objective,univSatFit1m);
SL1m <- summary(univSatFit1m)$SaturatedLikelihood
Chi1m <- LL1m-SL1m
# example 1m: Saturated Model with Cov Matrices & Means and Path-Style input
# -----------------------------------------------------------------------------
Mx.EC1 <- 1.06104
Mx.LL1 <- -1.474434e-17
# example Mx..1: Saturated Model with
# Cov Matrices
# -------------------------------------
Mx.EM1m <- 0.01680509
Mx.EC1m <- 1.06104
Mx.LL1m <- -1.108815e-13
# example Mx..1m: Saturated Model with
# Cov Matrices & Means
# -------------------------------------
# Mx answers hard-coded
# -----------------------------------------------------------------------------
# 1:CovPat
# -------------------------------------
omxCheckCloseEnough(Chi1,Mx.LL1,.001)
omxCheckCloseEnough(EC1,Mx.EC1,.001)
# 1m:CovMPat
# -------------------------------------
omxCheckCloseEnough(Chi1m,Mx.LL1m,.001)
omxCheckCloseEnough(EC1m,Mx.EC1m,.001)
omxCheckCloseEnough(EM1m,Mx.EM1m,.001)
# Compare OpenMx results to Mx results
# (LL: likelihood; EC: expected covariance, EM: expected means)
# -----------------------------------------------------------------------------
|