File: UnivariateTwinAnalysis.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (235 lines) | stat: -rw-r--r-- 8,602 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#
#   Copyright 2007-2018 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

# -----------------------------------------------------------------------
# Program: UnivariateTwinAnalysis.R  
# Author: Hermine Maes
# Date: 2009.08.01 
#
# ModelType: ACE
# DataType: Simulated Twin
# Field: Human Behavior Genetics
#
# Purpose: 
#      Univariate Twin Analysis Example in OpenMx:
#      From fitting saturated models to testing model assumptions 
#      To fitting the ACE model and a submodel
#
# RevisionHistory:
#      Hermine Maes -- 10 08 2009 updated & reformatted
#      Ross Gore -- 06 06 2011	added Model, Data & Field metadata
# -----------------------------------------------------------------------

require(OpenMx)
require(MASS)
# Load Library
# -----------------------------------------------------------------------

set.seed(200)
a2<-0.5		#Additive genetic variance component (a squared)
c2<-0.3		#Common environment variance component (c squared)
e2<-0.2		#Specific environment variance component (e squared)
rMZ <- a2+c2
rDZ <- .5*a2+c2
DataMZ <- mvtnorm::rmvnorm (1000, c(0,0), matrix(c(1,rMZ,rMZ,1),2,2))
DataDZ <- mvtnorm::rmvnorm (1000, c(0,0), matrix(c(1,rDZ,rDZ,1),2,2))

selVars <- c('t1','t2')
dimnames(DataMZ) <- list(NULL,selVars)
dimnames(DataDZ) <- list(NULL,selVars)
summary(DataMZ)
summary(DataDZ)
colMeans(DataMZ,na.rm=TRUE)
colMeans(DataDZ,na.rm=TRUE)
cov(DataMZ,use="complete")
cov(DataDZ,use="complete")
# Simulate Data: two standardized variables t1 & t2 for MZ's & DZ's
# -----------------------------------------------------------------------

twinSatModel <- mxModel("twinSat",
	mxModel("MZ",
		mxMatrix("Full", 1, 2, T, c(0,0), name="expMeanMZ"), 
		mxMatrix("Lower", 2, 2, T, .5, name="CholMZ"), 
		mxAlgebra(CholMZ %*% t(CholMZ), name="expCovMZ"), 
		mxData(DataMZ, type="raw"),
		mxFitFunctionML(),mxExpectationNormal("expCovMZ", "expMeanMZ", selVars)),  
	mxModel("DZ",
		mxMatrix("Full", 1, 2, T, c(0,0), name="expMeanDZ"), 
		mxMatrix("Lower", 2, 2, T, .5, name="CholDZ"), 
		mxAlgebra(CholDZ %*% t(CholDZ), name="expCovDZ"), 
		mxData(DataDZ, type="raw"), 
		mxFitFunctionML(),mxExpectationNormal("expCovDZ", "expMeanDZ", selVars)),
	mxAlgebra(MZ.objective + DZ.objective, name="twin"), 
	mxFitFunctionAlgebra("twin"))
twinSatFit <- mxRun(twinSatModel, suppressWarnings=TRUE)
# Specify and Run Saturated Model with RawData and Matrix-style Input
# -----------------------------------------------------------------------


ExpMeanMZ <- mxEval(MZ.expMeanMZ, twinSatFit)
ExpCovMZ <- mxEval(MZ.expCovMZ, twinSatFit)
ExpMeanDZ <- mxEval(DZ.expMeanDZ, twinSatFit)
ExpCovDZ <- mxEval(DZ.expCovDZ, twinSatFit)
LL_Sat <- mxEval(objective, twinSatFit)
# Generate Saturated Model Output
# -----------------------------------------------------------------------

twinSatModelSub1 <- twinSatModel
twinSatModelSub1$MZ$expMeanMZ <- mxMatrix("Full", 1, 2, T, 0, "mMZ", name="expMeanMZ")
twinSatModelSub1$DZ$expMeanDZ <- mxMatrix("Full", 1, 2, T, 0, "mDZ", name="expMeanDZ")
twinSatFitSub1 <- mxRun(twinSatModelSub1, suppressWarnings=TRUE)
# Specify and Run Saturated SubModel 1 equating means across twin order
# -----------------------------------------------------------------------

twinSatModelSub2 <- twinSatModelSub1
twinSatModelSub2$MZ$expMeanMZ <- mxMatrix("Full", 1, 2, T, 0, "mean", name="expMeanMZ")
twinSatModelSub2$DZ$expMeanDZ <- mxMatrix("Full", 1, 2, T, 0, "mean", name="expMeanDZ")
twinSatFitSub2 <- mxRun(twinSatModelSub2, suppressWarnings=TRUE)
# Specify and Run Saturated SubModel 2 equating means across zygosity
# -----------------------------------------------------------------------

LL_Sat <- mxEval(objective, twinSatFit)
LL_Sub1 <- mxEval(objective, twinSatFitSub1)
LRT1 <- LL_Sub1 - LL_Sat
LL_Sub2 <- mxEval(objective, twinSatFitSub2)
LRT2 <- LL_Sub2 - LL_Sat
# Generate Saturated Model Comparison Output
# -----------------------------------------------------------------------

twinACEModel <- mxModel("twinACE", 
	mxMatrix("Full", 1, 2, T, 20, "mean", name="expMean"), 
	# Matrix expMean for expected mean 
	# vector for MZ and DZ twins    
	# -------------------------------------
	
	mxMatrix("Full", nrow=1, ncol=1, free=TRUE, values=.6, label="a", name="X"),
	mxMatrix("Full", nrow=1, ncol=1, free=TRUE, values=.6, label="c", name="Y"),
	mxMatrix("Full", nrow=1, ncol=1, free=TRUE, values=.6, label="e", name="Z"),
	# Matrices X, Y, and Z to store the 
	# a, c, and e path coefficients
	# -------------------------------------
	
	mxAlgebra(X * t(X), name="A"),
	mxAlgebra(Y * t(Y), name="C"),
	mxAlgebra(Z * t(Z), name="E"),	
	# Matrixes A, C, and E to compute 
	# A, C, and E variance components
	# -------------------------------------
	
	mxAlgebra(rbind(cbind(A+C+E   , A+C),
					cbind(A+C     , A+C+E)), name="expCovMZ"),
	# Matrix expCOVMZ for expected 
	# covariance matrix for MZ twins
	# -------------------------------------
	
	mxModel("MZ",
		mxData(DataMZ, type="raw"), 
		mxFitFunctionML(),mxExpectationNormal("twinACE.expCovMZ", "twinACE.expMean",selVars)),

	mxAlgebra(rbind(cbind(A+C+E   , .5%x%A+C),
					cbind(.5%x%A+C , A+C+E)), name="expCovDZ"),
	# Matrix expCOVMZ for expected 
	# covariance matrix for DZ twins
	# -------------------------------------
	
	mxModel("DZ", 
		mxData(DataDZ, type="raw"), 
		mxFitFunctionML(),mxExpectationNormal("twinACE.expCovDZ", "twinACE.expMean",selVars)),

	mxAlgebra(MZ.objective + DZ.objective, name="twin"), 
	mxFitFunctionAlgebra("twin"))
twinACEFit <- mxRun(twinACEModel, suppressWarnings=TRUE)
# Specify and Run ACE Model with RawData and Matrix-style Input
# -----------------------------------------------------------------------

LL_ACE <- mxEval(objective, twinACEFit)
LRT_ACE= LL_ACE - LL_Sat
	MZc <- mxEval(expCovMZ, twinACEFit)
	DZc <- mxEval(expCovDZ, twinACEFit)
	M   <- mxEval(expMean, twinACEFit)
	# Retrieve expected mean vector and 
	# expected covariance matrices
	# -------------------------------------
	
	A <- mxEval(A, twinACEFit)
	C <- mxEval(C, twinACEFit)
	E <- mxEval(E, twinACEFit)
	# Retrieve the A, C, and E 
	# variance components
	# -------------------------------------
	
	V <- (A+C+E)
	a2 <- A/V
	c2 <- C/V
	e2 <- E/V
	# Calculate standardized variance 
	# components
	# -------------------------------------
	
	ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2)) 
	ACEest <- data.frame(ACEest, row.names=c("Variance Components","Standardized VC"))
	names(ACEest)<-c("A", "C", "E")
 	ACEest; LL_ACE; LRT_ACE
	#Build and print reporting table with 
	# row and column names
	# -------------------------------------
	
# Generate ACE Model Output
# -----------------------------------------------------------------------
	
twinAEModel <- twinACEModel
twinAEModel$twinACE$Y <- mxMatrix("Full", 1, 1, F, 0, "c", name="Y")  # drop c
twinAEFit <- mxRun(twinAEModel, suppressWarnings=TRUE)
# Specify and Fit Reduced AE Model
# ----------------------------------------------------------------------

LL_AE <- mxEval(objective, twinAEFit)

	MZc <- mxEval(expCovMZ, twinAEFit)
	DZc <- mxEval(expCovDZ, twinAEFit)
	M   <- mxEval(expMean, twinAEFit)
	# Retrieve expected mean vector and 
	# expected covariance matrices
	# -------------------------------------
	A <- mxEval(A, twinAEFit)
	C <- mxEval(C, twinAEFit)
	E <- mxEval(E, twinAEFit)
	# Retrieve the A, C and E variance 
	# components
	# -------------------------------------
	
	V <- (A+C+E)
	a2 <- A/V
	c2 <- C/V
	e2 <- E/V
	# Calculate standardized variance 
	# components
	# -------------------------------------

	AEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2)) 
	AEest <- data.frame(ACEest, row.names=c("Variance Components","Standardized VC"))
	names(ACEest)<-c("A", "C", "E")
	AEest; LL_AE; 
	# Build and print reporting table with 
	# row and column names
	# -------------------------------------

	LRT_ACE_AE <- LL_AE - LL_ACE
	LRT_ACE_AE
	# Calculate and print likelihood ratio 
	# test
	# -------------------------------------
# Generate ACE Model Output
# -----------------------------------------------------------------------