1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#
# Copyright 2007-2019 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------
# Program: UnivariateTwinAnalysis_MatrixRaw.R
# Author: Hermine Maes
# Date: 2009.08.01
#
# ModelType: ACE
# DataType: Twin
# Field: Human Behavior Genetics
#
# Purpose:
# Univariate Twin Analysis model to estimate causes of variation
# Matrix style model input - Raw data input
#
# RevisionHistory:
# Hermine Maes -- 2009.10.08 updated & reformatted
# Ross Gore -- 2011.06.06 added Model, Data & Field metadata
# Hermine Maes -- 2014.11.04 piecewise specification
# -----------------------------------------------------------------------------
require(OpenMx)
# Load Library
# -----------------------------------------------------------------------------
# Load Data
data(twinData)
# Select Variables for Analysis
Vars <- 'bmi'
nv <- 1 # number of variables
ntv <- nv*2 # number of total variables
selVars <- paste(Vars,c(rep(1,nv),rep(2,nv)),sep="") #c('bmi1','bmi2')
# Select Data for Analysis
mzData <- subset(twinData, zyg==1, selVars)
dzData <- subset(twinData, zyg==3, selVars)
# Generate Descriptive Statistics
colMeans(mzData,na.rm=TRUE)
colMeans(dzData,na.rm=TRUE)
cov(mzData,use="complete")
cov(dzData,use="complete")
# Prepare Data
# -----------------------------------------------------------------------------
require(OpenMx)
# Set Starting Values
svMe <- 20 # start value for means
svPa <- .5 # start value for path coefficients (sqrt(variance/#ofpaths))
# ACE Model
# Matrices declared to store a, d, and e Path Coefficients
pathA <- mxMatrix( type="Full", nrow=nv, ncol=nv,
free=TRUE, values=svPa, label="a11", name="a" )
pathC <- mxMatrix( type="Full", nrow=nv, ncol=nv,
free=TRUE, values=svPa, label="c11", name="c" )
pathE <- mxMatrix( type="Full", nrow=nv, ncol=nv,
free=TRUE, values=svPa, label="e11", name="e" )
# Matrices generated to hold A, C, and E computed Variance Components
covA <- mxAlgebra( expression=a %*% t(a), name="A" )
covC <- mxAlgebra( expression=c %*% t(c), name="C" )
covE <- mxAlgebra( expression=e %*% t(e), name="E" )
# Algebra to compute total variances
covP <- mxAlgebra( expression=A+C+E, name="V" )
# Algebra for expected Mean and Variance/Covariance Matrices in MZ & DZ twins
meanG <- mxMatrix( type="Full", nrow=1, ncol=ntv,
free=TRUE, values=svMe, label="mean", name="expMean" )
covMZ <- mxAlgebra( expression=rbind( cbind(V, A+C),
cbind(A+C, V)), name="expCovMZ" )
covDZ <- mxAlgebra( expression=rbind( cbind(V, 0.5%x%A+C),
cbind(0.5%x%A+C , V)), name="expCovDZ" )
# Data objects for Multiple Groups
dataMZ <- mxData( observed=mzData, type="raw" )
dataDZ <- mxData( observed=dzData, type="raw" )
# Objective objects for Multiple Groups
expMZ <- mxExpectationNormal( covariance="expCovMZ", means="expMean",
dimnames=selVars )
expDZ <- mxExpectationNormal( covariance="expCovDZ", means="expMean",
dimnames=selVars )
funML <- mxFitFunctionML()
# Combine Groups
pars <- list( pathA, pathC, pathE, covA, covC, covE, covP )
modelMZ <- mxModel( pars, meanG, covMZ, dataMZ, expMZ, funML, name="MZ" )
modelDZ <- mxModel( pars, meanG, covDZ, dataDZ, expDZ, funML, name="DZ" )
fitML <- mxFitFunctionMultigroup(c("MZ", "DZ") )
twinACEModel <- mxModel( "ACE", pars, modelMZ, modelDZ, fitML )
# Run Model
twinACEFit <- mxRun(twinACEModel, intervals=T)
twinACESum <- summary(twinACEFit)
twinACESum
# Fit ACE Model with RawData and Matrices Input
# -----------------------------------------------------------------------------
twinACEFit <- mxRun(twinACEModel)
# Run ACE Model
# -----------------------------------------------------------------------------
# Generate ACE Model Output
estMean <- mxEval(mean, twinACEFit) # expected mean
estCovMZ <- mxEval(expCovMZ, twinACEFit$MZ) # expected covariance matrix for MZ's
estCovDZ <- mxEval(expCovDZ, twinACEFit$DZ) # expected covariance matrix for DZ's
estVA <- mxEval(a*a, twinACEFit) # additive genetic variance, a^2
estVC <- mxEval(c*c, twinACEFit) # dominance variance, d^2
estVE <- mxEval(e*e, twinACEFit) # unique environmental variance, e^2
estVP <- (estVA+estVC+estVE) # total variance
estPropVA <- estVA/estVP # standardized additive genetic variance
estPropVC <- estVC/estVP # standardized dominance variance
estPropVE <- estVE/estVP # standardized unique environmental variance
estACE <- rbind(cbind(estVA,estVC,estVE), # table of estimates
cbind(estPropVA,estPropVC,estPropVE))
LL_ACE <- mxEval(objective, twinACEFit) # likelihood of ADE model
# Get Model Output
# -----------------------------------------------------------------------------
Mx.A <- 0.6173023
Mx.C <- 5.595822e-14
Mx.E <- 0.1730462
Mx.M <- 21.39293
Mx.LL_ACE <- 4067.663
# Mx answers hard-coded
# -----------------------------------------------------------------------------
omxCheckCloseEnough(LL_ACE,Mx.LL_ACE,.001)
omxCheckCloseEnough(estVA,Mx.A,.001)
omxCheckCloseEnough(estVC,Mx.C,.001)
omxCheckCloseEnough(estVE,Mx.E,.001)
omxCheckCloseEnough(estMean,Mx.M,.001)
# Compare OpenMx results to Mx results
# -----------------------------------------------------------------------------
# Change Model
twinAEModel <- mxModel( twinACEFit, name="AE" )
twinAEModel <- omxSetParameters( twinAEModel, labels="c11", free=FALSE, values=0 )
twinAEFit <- mxRun(twinAEModel)
# Run AE Model
# -----------------------------------------------------------------------------
# Generate AE Model Output
estVA <- mxEval(a*a, twinAEFit) # additive genetic variance, a^2
estVE <- mxEval(e*e, twinAEFit) # unique environmental variance, e^2
estVP <- (estVA+estVE) # total variance
estPropVA <- estVA/estVP # standardized additive genetic variance
estPropVE <- estVE/estVP # standardized unique environmental variance
estAE <- rbind(cbind(estVA,estVE), # table of estimates
cbind(estPropVA,estPropVE))
LL_AE <- mxEval(objective, twinAEFit) # likelihood of AE model
LRT_ACE_AE <- LL_AE - LL_ACE
# Get Model Output
# -----------------------------------------------------------------------------
Mx.A <- 0.6173023
Mx.C <- 0
Mx.E <- 0.1730462
Mx.M <- 21.39293
Mx.LL_AE <- 4067.663
# Hard-code Mx results
# -----------------------------------------------------------------------------
omxCheckCloseEnough(LL_AE,Mx.LL_AE,.001)
omxCheckCloseEnough(estVA,Mx.A,.001)
omxCheckCloseEnough(estVC,Mx.C,.001)
omxCheckCloseEnough(estVE,Mx.E,.001)
omxCheckCloseEnough(estMean,Mx.M,.001)
# Compare OpenMx results to Mx results:
# -----------------------------------------------------------------------------
estACE
estAE
LRT_ACE_AE
# Print relevant output
# -----------------------------------------------------------------------------
|