File: UnivariateTwinAnalysis_PathRaw.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (214 lines) | stat: -rw-r--r-- 7,417 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#
#   Copyright 2007-2018 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

# -----------------------------------------------------------------------------
# Program: UnivariateTwinAnalysis_PathRaw.R  
# Author: Hermine Maes
# Date: 2009.08.01
#
# ModelType: ACE
# DataType: Twin
# Field: Human Behavior Genetics 
#
# Purpose: 
#      Univariate Twin Analysis model to estimate causes of variation 
#      Path style model input - Raw data input
#
# RevisionHistory:
#      Hermine Maes -- 2009.10.08 updated & reformatted
#      Ross Gore -- 2011.06.06	added Model, Data & Field metadata
#      Hermine Maes -- 2014.11.04 piecewise specification
# -----------------------------------------------------------------------------

require(OpenMx)
# Load Library
# -----------------------------------------------------------------------------

# Load Data
data(twinData)

# Select Variables for Analysis
selVars   <- c('bmi1','bmi2')
aceVars   <- c("A1","C1","E1","A2","C2","E2")

# Select Data for Analysis
mzData    <- subset(twinData, zyg==1, selVars)
dzData    <- subset(twinData, zyg==3, selVars)

# Generate Descriptive Statistics
colMeans(mzData,na.rm=TRUE)
colMeans(dzData,na.rm=TRUE)
cov(mzData,use="complete")
cov(dzData,use="complete")
# Prepare Data
# -----------------------------------------------------------------------------

# Path objects for Multiple Groups
manifestVars=selVars
latentVars=aceVars
# variances of latent variables
latVariances <- mxPath( from=aceVars, arrows=2, 
                        free=FALSE, values=1 )
# means of latent variables
latMeans     <- mxPath( from="one", to=aceVars, arrows=1, 
                        free=FALSE, values=0 )
# means of observed variables
obsMeans     <- mxPath( from="one", to=selVars, arrows=1, 
                        free=TRUE, values=20, labels="mean" )
# path coefficients for twin 1
pathAceT1    <- mxPath( from=c("A1","C1","E1"), to="bmi1", arrows=1, 
                        free=TRUE, values=.5,  label=c("a","c","e") )
# path coefficients for twin 2
pathAceT2    <- mxPath( from=c("A2","C2","E2"), to="bmi2", arrows=1, 
                        free=TRUE, values=.5,  label=c("a","c","e") )
# covariance between C1 & C2
covC1C2      <- mxPath( from="C1", to="C2", arrows=2, 
                        free=FALSE, values=1 )
# covariance between A1 & A2 in MZ twins
covA1A2_MZ   <- mxPath( from="A1", to="A2", arrows=2, 
                        free=FALSE, values=1 )
# covariance between A1 & A2 in DZ twins
covA1A2_DZ   <- mxPath( from="A1", to="A2", arrows=2, 
                        free=FALSE, values=.5 )

# Data objects for Multiple Groups
dataMZ       <- mxData( observed=mzData, type="raw" )
dataDZ       <- mxData( observed=dzData, type="raw" )

# Combine Groups
paths        <- list( latVariances, latMeans, obsMeans, 
                      pathAceT1, pathAceT2, covC1C2 )
modelMZ      <- mxModel(model="MZ", type="RAM", manifestVars=selVars, 
                        latentVars=aceVars, paths, covA1A2_MZ, dataMZ )
modelDZ      <- mxModel(model="DZ", type="RAM", manifestVars=selVars, 
                        latentVars=aceVars, paths, covA1A2_DZ, dataDZ )
minus2ll     <- mxAlgebra( expression=MZ.fitfunction + DZ.fitfunction, 
                           name="minus2loglikelihood" )
obj          <- mxFitFunctionAlgebra( "minus2loglikelihood" )
twinACEModel     <- mxModel(model="ACE", modelMZ, modelDZ, minus2ll, obj )

# Run Model
twinACEFit   <- mxRun(twinACEModel)
twinACESum   <- summary(twinACEFit)
twinACESum
# Fit ACE Model with RawData and Path-Style Input
# -----------------------------------------------------------------------------

# Generate & Print Output
# mean
M  <- mxEval(mean, twinACEFit)
# additive genetic variance, a^2
A  <- mxEval(a*a, twinACEFit)
# shared environmental variance, c^2
C  <- mxEval(c*c, twinACEFit)
# unique environmental variance, e^2
E  <- mxEval(e*e, twinACEFit)
# total variance
V  <- (A+C+E)
# standardized A
a2 <- A/V
# standardized C
c2 <- C/V
# standardized E
e2 <- E/V
# table of estimates
estACE <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
# likelihood of ACE model
LL_ACE <- mxEval(fitfunction, twinACEFit)
# Get Model Output
# -----------------------------------------------------------------------------


Mx.A <- 0.6173023
Mx.C <- 5.595822e-14
Mx.E <- 0.1730462
Mx.M <- 21.39293
Mx.LL_ACE <- 4067.663
# Mx answers hard-coded
# -----------------------------------------------------------------------------


omxCheckCloseEnough(LL_ACE,Mx.LL_ACE,.001)
omxCheckCloseEnough(A,Mx.A,.001)
omxCheckCloseEnough(C,Mx.C,.001)
omxCheckCloseEnough(E,Mx.E,.001)
omxCheckCloseEnough(M,Mx.M,.001)
#Compare OpenMx results to Mx results 
# -----------------------------------------------------------------------------


# Change Path Objects
# path coefficients for twin 1
pathAceT1    <- mxPath( from=c("A1","C1","E1"), to="bmi1", arrows=1, 
                        free=c(T,F,T), values=c(.6,0,.6),  label=c("a","c","e") )
# path coefficients for twin 2
pathAceT2    <- mxPath( from=c("A2","C2","E2"), to="bmi2", arrows=1, 
                        free=c(T,F,T), values=c(.6,0,.6),  label=c("a","c","e") )

# Combine Groups
paths        <- list( latVariances, latMeans, obsMeans, 
                        pathAceT1, pathAceT2, covC1C2 )
modelMZ      <- mxModel(model="MZ", type="RAM", manifestVars=selVars, 
                        latentVars=aceVars, paths, covA1A2_MZ, dataMZ )
modelDZ      <- mxModel(model="DZ", type="RAM", manifestVars=selVars, 
                        latentVars=aceVars, paths, covA1A2_DZ, dataDZ )
twinAEModel      <- mxModel(model="AE", modelMZ, modelDZ, minus2ll, obj )

# Run Model
twinAEFit    <- mxRun(twinAEModel)
twinAESum    <- summary(twinAEFit)
# Fit AE model
# -----------------------------------------------------------------------------

# Generate & Print Output
M  <- mxEval(mean, twinAEFit)
A  <- mxEval(a*a, twinAEFit)
C  <- mxEval(c*c, twinAEFit)
E  <- mxEval(e*e, twinAEFit)
V  <- (A+C+E)
a2 <- A/V
c2 <- C/V
e2 <- E/V
estAE <- rbind(cbind(A, C, E),cbind(a2, c2, e2))
LL_AE <- mxEval(fitfunction, twinAEFit)
LRT_ACE_AE <- LL_AE - LL_ACE
estACE
estAE
LRT_ACE_AE
# Get Model Output
# -----------------------------------------------------------------------------

Mx.A <- 0.6173023
Mx.C <- 0
Mx.E <- 0.1730462
Mx.M <- 21.39293
Mx.LL_AE <- 4067.663
# Mx answers hard-coded
# -----------------------------------------------------------------------------

omxCheckCloseEnough(LL_AE,Mx.LL_AE,.001)
omxCheckCloseEnough(A,Mx.A,.001)
omxCheckCloseEnough(C,Mx.C,.001)
omxCheckCloseEnough(E,Mx.E,.001)
omxCheckCloseEnough(M,Mx.M,.001)
# Compare OpenMx results to Mx results 
# -----------------------------------------------------------------------------

estACE
estAE
LRT_ACE_AE
#Print relevant output
# -----------------------------------------------------------------------------