1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
#
# Copyright 2007-2019 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===========
# = history =
# ===========
# ~/bin/OpenMx/inst/models/failing/SimpleConfidenceIntervals.R
# 2017-04-14 04:35PM TBATES: update for mxFitFunctionMultigroup(c("MZ", "DZ"))
# 2019-03-24 05:06PM TBATES: Still FAILING at line > 167)
require(OpenMx)
# j repeatedly gets set to a large value at subnp.cpp line 893.
#
# This is the same algorithmic problem with RSOLNP and CSOLNP we talked
# about some time ago. So, CSOLNP needs boundaries for some problems to
# get to the optimum. If you remove the boundary, it will get stuck in a
# loop.
if (mxOption(NULL,"Default optimizer") != 'CSOLNP') stop("SKIP")
# mxOption(NULL, "Default optimizer", "NPSOL")
#Prepare Data
# -----------------------------------------------------------------------
data(twinData)
summary(twinData)
selVars <- c('bmi1','bmi2')
mzfData <- as.matrix(subset(twinData, zyg==1, c(bmi1,bmi2)))
dzfData <- as.matrix(subset(twinData, zyg==3, c(bmi1,bmi2)))
colMeans(mzfData,na.rm=TRUE)
colMeans(dzfData,na.rm=TRUE)
cov(mzfData,use="complete")
cov(dzfData,use="complete")
#Fit ACE Model with RawData and Matrices Input
# -----------------------------------------------------------------------
twinACEModel <- mxModel("twinACE",
mxModel("common",
# Matrices X, Y, and Z to store a, c, and e path coefficients
mxMatrix("Full", nrow=1, ncol=1, free=T, values=.6, lbound=.1, label="a", name="X"),
mxMatrix("Full", nrow=1, ncol=1, free=T, values=sqrt(.6), label="c", name="Y"),
mxMatrix("Full", nrow=1, ncol=1, free=T, values=.6, lbound=.1, label="e", name="Z"),
# Matrices A, C, and E compute variance components
mxAlgebra(expression=X %*% t(X), name="A"),
mxAlgebra(expression=Y %*% t(Y), name="C"),
mxAlgebra(expression=Z %*% t(Z), name="E"),
mxMatrix("Full", nrow=1, ncol=2, free=T, values= 20, lbound=0, ubound=30, label="mean", name="expMean"),
# Algebra for expected variance/covariance matrix in MZ
mxAlgebra(name="expCovMZ",
rbind(cbind(A+C+E, A+C),
cbind(A+C , A+C+E))
),
# Algebra for expected variance/covariance matrix in DZ
# note use of 0.5, converted to 1*1 matrix
mxAlgebra(name="expCovDZ", expression=
rbind(cbind(A+C+E , 0.5%x%A+C),
cbind(0.5%x%A+C , A+C+E))
)
),
mxModel("MZ",
mxData(observed=mzfData, type="raw"),
mxFitFunctionML(),
mxExpectationNormal("common.expCovMZ", means="common.expMean", dimnames=selVars)
),
mxModel("DZ",
mxData(observed=dzfData, type="raw"),
mxFitFunctionML(),
mxExpectationNormal("common.expCovDZ", means="common.expMean", dimnames=selVars)
),
mxFitFunctionMultigroup(c("MZ", "DZ")),
mxCI(c("common.A", "common.C[,]", "common.E[1,1]"))
)
#Run ACE model
# -----------------------------------------------------------------------
twinACENoIntervals <- mxRun(twinACEModel, suppressWarnings = TRUE)
twinACENoIntervals <- mxRun(twinACEModel)
twinACEFit <- mxRun(twinACEModel, intervals=TRUE)
# summary(twinACEFit)
detail <- twinACEFit$compute$steps[['CI']]$output[['detail']]
print(detail)
omxCheckTrue(is.factor(detail[['side']]))
omxCheckEquals(levels(detail[['side']]), c('upper', 'lower'))
ci <- twinACEFit$output$confidenceIntervals
# cat(deparse(round(ci[,'ubound'],4)))
omxCheckCloseEnough(ci[-2,'lbound'], c(0.556, 0.1537), .01)
omxCheckCloseEnough(ci[,'ubound'], c(0.683, 0.052, 0.1956), .005)
iterateMxRun <- function(model, maxIterations) {
model <- mxOption(model, "Optimality tolerance", 1e-6)
return(iterateMxRunHelper(mxRun(mxModel(model, mxComputeGradientDescent(maxMajorIter=150L))),
maxIterations, 1))
}
iterateMxRunHelper <- function(model, maxIterations, iteration) {
if (length(model$output) > 0 && model$output$status[[1]] == 0) {
return(model)
} else if (iteration < maxIterations) {
return(iterateMxRunHelper(mxRun(mxModel(model, mxComputeGradientDescent(maxMajorIter=150L))),
maxIterations, iteration + 1))
} else {
return(model)
}
}
twinACEIntervals <- twinACEFit
# twinACEIntervals$output <- list()
maxMisfit <- mxEval(objective, twinACEFit)[1,1] + 3.84
CIaupper <- mxModel(twinACEIntervals, name = 'A_CIupper',
mxConstraint(MZ.objective + DZ.objective < maxMisfit),
mxAlgebra(- common.A, name="upperCIa"),
mxFitFunctionAlgebra("upperCIa")
)
CIalower <- mxModel(twinACEIntervals, name = 'A_CIlower',
mxConstraint(MZ.objective + DZ.objective < maxMisfit),
mxAlgebra(common.A, name="lowerCIa"),
mxFitFunctionAlgebra("lowerCIa")
)
runCIalower <- suppressWarnings(iterateMxRun(CIalower, 3))
runCIaupper <- suppressWarnings(iterateMxRun(CIaupper, 3))
CIcupper <- mxModel(twinACEIntervals, name = 'C_CIupper',
mxConstraint(MZ.objective + DZ.objective < maxMisfit),
mxAlgebra(- common.C,name="upperCIc"),
mxFitFunctionAlgebra("upperCIc")
)
runCIcupper <- suppressWarnings(iterateMxRun(CIcupper, 3))
CIeupper <- mxModel(twinACEIntervals, name = 'E_CIupper',
mxConstraint(MZ.objective + DZ.objective < maxMisfit),
mxAlgebra(- common.E,name="upperCIe"),
mxFitFunctionAlgebra("upperCIe")
)
CIelower <- mxModel(twinACEIntervals, name = 'E_CIlower',
mxConstraint(MZ.objective + DZ.objective < maxMisfit),
mxAlgebra(common.E,name="lowerCIe"),
mxFitFunctionAlgebra("lowerCIe")
)
runCIelower <- suppressWarnings(iterateMxRun(CIelower, 3))
runCIeupper <- suppressWarnings(iterateMxRun(CIeupper, 3))
omxCheckCloseEnough(twinACEFit$output$confidenceIntervals[1, 'lbound'], mxEval(common.A, runCIalower), .01)
omxCheckCloseEnough(twinACEFit$output$confidenceIntervals[1, 'ubound'], mxEval(common.A, runCIaupper), .01)
# Can go either way
# omxCheckTrue(is.na(twinACEFit$output$confidenceIntervals[2, 'lbound']))
# Next check still failing under 2.7.9
# Still failing as of OpenMx version: 2.12.2.233 [GIT v2.12.2-233-ga7a310a]
omxCheckCloseEnough(twinACEFit$output$confidenceIntervals[2, 'ubound'], mxEval(common.C, runCIcupper), .001)
omxCheckCloseEnough(twinACEFit$output$confidenceIntervals[3, 'lbound'], mxEval(common.E, runCIelower), .005)
omxCheckCloseEnough(twinACEFit$output$confidenceIntervals[3, 'ubound'], mxEval(common.E, runCIeupper), .005)
twinACEParallel <- omxParallelCI(twinACENoIntervals)
if (0) {
twinACEFit$output$confidenceIntervals - twinACEParallel$output$confidenceIntervals
}
mask <- !is.na(twinACEFit$output$confidenceIntervals)
omxCheckCloseEnough(twinACEFit$output$confidenceIntervals[mask],
twinACEParallel$output$confidenceIntervals[mask], .001)
|