1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
# ===========
# = HISTORY =
# ===========
# 2017-04-14 05:07PM TBATES THIS SCRIPT doesn't run - needs new WLS objective
#
# Copyright 2007-2018 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------------
# Program: BivariateSaturated_MatrixCov.R
# Author: Hermine Maes
# Date: 2009.08.01
#
# ModelType: Saturated
# DataType: Continuous
# Field: None
#
# Purpose:
# Bivariate Saturated model to estimate means and (co)variances
# Matrix style model input - Covariance matrix data input
# Uses WLS for model fit
#
# RevisionHistory:
# Hermine Maes -- 2009.10.08 updated & reformatted
# Ross Gore -- 2011.06.15 added Model, Data & Field metadata
# Tim Brick -- 2012.06.08 updated to use WLS modeling
# -----------------------------------------------------------------------------
require(OpenMx)
require(MASS)
# Load Libraries
# -----------------------------------------------------------------------------
set.seed(200)
rs = .5
xy <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
testData <- xy
selVars <- c("X","Y")
dimnames(testData) <- list(NULL, selVars)
summary(testData)
covData <- cov(testData)
# Simulate Data
# -----------------------------------------------------------------------------
bivSatModel3 <- mxModel("bivSat3",
mxMatrix("Symm", nrow=2, ncol=2, free=T, values = c(1,.5,1), name = "expCov"),
mxData(observed=covData, type="cov", numObs=1000),
mxFitFunctionWLS(covariance="expCov", dimnames=selVars)
)
bivSatFit3 <- mxRun(bivSatModel3)
EC3 <- mxEval(expCov, bivSatFit3)
LL3 <- mxEval(objective,bivSatFit3)
bivSatSummary3 <- summary(bivSatFit3)
SL3 <- bivSatSummary3$SaturatedLikelihood
omxCheckEquals(bivSatSummary3$observedStatistics, nrow(covData) * (ncol(covData) + 1) / 2)
Chi3 <- LL3-SL3
# example 3: Saturated Model with Cov Matrices and Matrix-Style Input
# -----------------------------------------------------------------------------
bivSatModel3m <- mxModel("bivSat3m",
mxMatrix(
type="Symm",
nrow=2,
ncol=2,
free=T,
values=c(1,.5,1),
name="expCov"
),
mxMatrix(
type="Full",
nrow=1,
ncol=2,
free=T,
values=c(0,0),
name="expMean"
),
mxData(
observed=cov(testData),
type="cov",
numObs=1000,
means=colMeans(testData)
),
imxWLSObjective(
covariance="expCov",
means="expMean",
dimnames=selVars
)
)
bivSatFit3m <- mxRun(bivSatModel3m)
EM3m <- mxEval(expMean, bivSatFit3m)
EC3m <- mxEval(expCov, bivSatFit3m)
LL3m <- mxEval(objective,bivSatFit3m)
SL3m <- summary(bivSatFit3m)$SaturatedLikelihood
Chi3m <- LL3m-SL3m
# example 3m: Saturated Model with Cov Matrices & Means and Matrix-Style Input
# -----------------------------------------------------------------------------
nWeights <- 5
bivSatModel3w <- mxModel("bivSat3w",
mxMatrix(
type="Symm",
nrow=2,
ncol=2,
free=T,
values=c(1,.5,1),
name="expCov"
),
mxMatrix(
type="Full",
nrow=1,
ncol=2,
free=T,
values=c(0,0),
name="expMean"
),
mxMatrix("Iden",5,5,free=FALSE, name="weightMat"),
mxData(
observed=cov(testData),
type="cov",
numObs=1000,
means=colMeans(testData)
),
imxWLSObjective(
covariance="expCov",
means="expMean",
weights="weightMat",
dimnames=selVars
)
)
bivSatFit3w <- mxRun(bivSatModel3w)
EM3w <- mxEval(expMean, bivSatFit3w)
EC3w <- mxEval(expCov, bivSatFit3w)
LL3w <- mxEval(objective,bivSatFit3w)
SL3w <- summary(bivSatFit3w)$SaturatedLikelihood
Chi3w <- LL3w-SL3w
# example 3w: Saturated Model with Cov Matrices & Means and Matrix-Style Input Plus Weights = I
# ---------------------------------------------------------------------------------------------
Mx.EC1 <- matrix(c(1.0102951, 0.4818317, 0.4818317, 0.9945329),2,2)
Mx.LL1 <- -2.258885e-13
# example Mx..1: Saturated Model with
# Cov Matrices
# -------------------------------------
Mx.EM1m <- matrix(c(0.03211648, -0.004883811),1,2)
Mx.EC1m <- matrix(c(1.0102951, 0.4818317, 0.4818317, 0.9945329),2,2)
Mx.LL1m <- -5.828112e-14
# example Mx..1m: Saturated Model with
# Cov Matrices & Means
# -------------------------------------
# Mx answers hard-coded
# -----------------------------------------------------------------------------
omxCheckCloseEnough(Chi3,Mx.LL1,.001)
omxCheckCloseEnough(EC3,Mx.EC1,.001)
# 3:CovMat
# -------------------------------------
omxCheckCloseEnough(Chi3m,Mx.LL1m,.001)
omxCheckCloseEnough(EC3m,Mx.EC1m,.001)
omxCheckCloseEnough(EM3m,Mx.EM1m,.001)
# 3m:CovMPat
# -------------------------------------
omxCheckCloseEnough(Chi3w,Mx.LL1m,.001)
omxCheckCloseEnough(EC3w,Mx.EC1m,.001)
omxCheckCloseEnough(EM3w,Mx.EM1m,.001)
# 3w:CovMPat
# -------------------------------------
# Compare OpenMx results to Mx results
# (LL: likelihood; EC: expected covariance, EM: expected means)
# -----------------------------------------------------------------------------
|