1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
# -----------------------------------------------------------------------
# Program: UnivariateTwinAnalysis20090925.R
# Author: Hermine Maes
# Date: Wed Sep 25 11:45:52 EDT 2009
#
# Revision History
# Hermine Maes -- Wed Sep 25 11:45:52 EDT 2009 UnivariateTwinAnalysis20090925.R
# TBATES: 2017-04-14 04:18PM
# Fixed script bug (DataMZ instead of MZ and DataDZ instead of DZ as the data names)
# Replace out of date mxFIMLObjective calls
# add mxFitFunctionMultigroup(c("MZ", "DZ"))
# Gave up as there are additional script errors (like using the model object as a string)
# and no erorr is identified in this script.
# TODO include equivalent file for mx 1.x
# TODO: Add omxCheckCloseEnough() calls
# -----------------------------------------------------------------------
# Simulate Data: two standardized variables t1 & t2 for MZ's & DZ's
# -----------------------------------------------------------------------
require(OpenMx)
require(MASS)
set.seed(200)
a2<-0.5 #Additive genetic variance component (a squared)
c2<-0.3 #Common environment variance component (c squared)
e2<-0.2 #Specific environment variance component (e squared)
rMZ <- a2+c2
rDZ <- .5*a2+c2
DataMZ <- mvrnorm(1000, c(0,0), matrix(c(1,rMZ,rMZ,1),2,2))
DataDZ <- mvrnorm(1000, c(0,0), matrix(c(1,rDZ,rDZ,1),2,2))
selVars <- c('t1','t2')
dimnames(DataMZ) <- list(NULL,selVars)
dimnames(DataDZ) <- list(NULL,selVars)
summary(DataMZ)
summary(DataDZ)
colMeans(DataMZ, na.rm=TRUE)
colMeans(DataDZ, na.rm=TRUE)
cov(DataMZ,use="complete")
cov(DataDZ,use="complete")
# Specify and Run Saturated Model with RawData and Matrix-style Input
# -----------------------------------------------------------------------
twinSatModel <- mxModel("twinSat",
mxModel("MZ",
mxMatrix("Full", 1, 2, T, c(0,0), dimnames=list(NULL, selVars), name="expMeanMZ"),
mxMatrix("Lower", 2, 2, T, .5, dimnames=list(selVars, selVars), name="CholMZ"),
mxAlgebra(CholMZ %*% t(CholMZ), name="expCovMZ", dimnames=list(selVars, selVars)),
mxData(DataMZ, type="raw"),
mxExpectationNormal("expCovMZ", "expMeanMZ"),
mxFitFunctionML()
),
mxModel("DZ",
mxMatrix("Full", 1, 2, T, c(0,0), dimnames=list(NULL, selVars), name="expMeanDZ"),
mxMatrix("Lower", 2, 2, T, .5, dimnames=list(selVars, selVars), name="CholDZ"),
mxAlgebra(CholDZ %*% t(CholDZ), name="expCovDZ", dimnames=list(selVars, selVars)),
mxData(DataDZ, type="raw"),
mxExpectationNormal("expCovDZ", "expMeanDZ"),
mxFitFunctionML()
),
mxFitFunctionMultigroup(c("MZ", "DZ"))
)
twinSatFit <- mxRun(twinSatModel)
# Generate Saturated Model Output
# -----------------------------------------------------------------------
ExpMeanMZ <- mxEval(MZ.expMeanMZ, twinSatFit)
ExpCovMZ <- mxEval(MZ.expCovMZ, twinSatFit)
ExpMeanDZ <- mxEval(DZ.expMeanDZ, twinSatFit)
ExpCovDZ <- mxEval(DZ.expCovDZ, twinSatFit)
LL_Sat <- mxEval(objective, twinSatFit)
# Specify and Run Saturated SubModel 1 equating means across twin order
# -----------------------------------------------------------------------
twinSatModelSub1 <- mxModel(twinSatModel,
mxModel(MZ, mxMatrix("Full", 1, 2, T, 0, "mMZ", dimnames=list(NULL, selVars), name = "expMeanMZ")),
mxModel(DZ, mxMatrix("Full", 1, 2, T, 0, "mDZ", dimnames=list(NULL, selVars), name = "expMeanDZ"))
)
twinSatFitSub1 <- mxRun(twinSatModelSub1)
# Specify and Run Saturated SubModel 2 equating means across twin order and zygosity
# -----------------------------------------------------------------------
twinSatModelSub2 <- mxModel(twinSatModelSub1,
mxModel("MZ",
mxMatrix("Full", 1, 2, T, 0, "mean", dimnames=list(NULL, selVars), name="expMeanMZ"),
mxMatrix("Lower", 2, 2, T, .5, labels= c("var","MZcov","var"),
dimnames=list(selVars, selVars), name="CholMZ")
),
mxModel("DZ",
mxMatrix("Full", 1, 2, T, 0, "mean", dimnames=list(NULL, selVars), name="expMeanDZ"),
mxMatrix("Lower", 2, 2, T, .5, labels= c("var","DZcov","var"),
dimnames=list(selVars, selVars), name="CholDZ")
)
)
twinSatFitSub2 <- mxRun(twinSatModelSub2)
# Generate Saturated Model Comparison Output
# -----------------------------------------------------------------------
LL_Sat <- mxEval(objective, twinSatFit)
LL_Sub1 <- mxEval(objective, twinSatFitSub1)
LRT1 <- LL_Sub1 - LL_Sat
LL_Sub2 <- mxEval(objective, twinSatFitSub1)
LRT2 <- LL_Sub2 - LL_Sat
# Specify and Run ACE Model with RawData and Matrix-style Input
# -----------------------------------------------------------------------
twinACEModel <- mxModel("twinACE",
mxMatrix("Full", 1, 2, T, 20, "mean", dimnames=list(NULL, selVars), name="expMean"),
# Matrix expMean for expected mean vector for MZ and DZ twins
mxMatrix("Full", nrow=1, ncol=1, free=TRUE, values=.6, label="a", name="X"),
mxMatrix("Full", nrow=1, ncol=1, free=TRUE, values=.6, label="c", name="Y"),
mxMatrix("Full", nrow=1, ncol=1, free=TRUE, values=.6, label="e", name="Z"),
# Matrices X, Y, and Z to store the a, c, and e path coefficients
mxMatrix("Full", nrow=1, ncol=1, free=FALSE, values=.5, name="h"),
mxAlgebra(X * t(X), name="A"),
mxAlgebra(Y * t(Y), name="C"),
mxAlgebra(Z * t(Z), name="E"),
# Matrixes A, C, and E to compute A, C, and E variance components
mxAlgebra(rbind(cbind(A+C+E , A+C),
cbind(A+C , A+C+E)), dimnames = list(selVars, selVars), name="expCovMZ"),
# Matrix expCOVMZ for expected covariance matrix for MZ twins
mxAlgebra(rbind(cbind(A+C+E , h%x%A+C),
cbind(h%x%A+C , A+C+E)), dimnames = list(selVars, selVars), name="expCovDZ"),
# Matrix expCOVMZ for expected covariance matrix for DZ twins
mxModel("MZ",
mxData(DataMZ, type="raw"),
mxFIMLObjective("twinACE.expCovMZ", "twinACE.expMean")),
mxModel("DZ",
mxData(DataDZ, type="raw"),
mxFIMLObjective("twinACE.expCovDZ", "twinACE.expMean")),
mxAlgebra(MZ.objective + DZ.objective, name="twin"),
mxFitFunctionAlgebra("twin")
)
twinACEFit <- mxRun(twinACEModel)
# Generate ACE Model Output
# -----------------------------------------------------------------------
LL_ACE <- mxEval(objective, twinACEFit)
LRT_ACE= LL_ACE - LL_Sat
#Retrieve expected mean vector and expected covariance matrices
MZc <- mxEval(expCovMZ, twinACEFit)
DZc <- mxEval(expCovDZ, twinACEFit)
M <- mxEval(expMean, twinACEFit)
#Retrieve the A, C, and E variance components
A <- mxEval(A, twinACEFit)
C <- mxEval(C, twinACEFit)
E <- mxEval(E, twinACEFit)
#Calculate standardized variance components
V <- (A+C+E)
a2 <- A/V
c2 <- C/V
e2 <- E/V
#Build and print reporting table with row and column names
ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
ACEest <- data.frame(ACEest, row.names=c("Variance Components","Standardized VC"))
names(ACEest)<-c("A", "C", "E")
ACEest; LL_ACE; LRT_ACE
# Specify and reduced AE Model (drop c $0)
# -----------------------------------------------------------------------
twinAEModel <- mxModel(twinACEModel, name="twinAE",
mxMatrix("Full", nrow=1, ncol=1, free=F, values=0, label="c", name="Y")
)
twinAEFit <- mxRun(twinAEModel)
# Generate ACE Model Output
# -----------------------------------------------------------------------
LL_AE <- mxEval(objective, twinAEFit)
#Retrieve expected mean vector and expected covariance matrices
MZc <- mxEval(expCovMZ, twinAEFit)
DZc <- mxEval(expCovDZ, twinAEFit)
M <- mxEval(expMean, twinAEFit)
#Retrieve the A, C and E variance components
A <- mxEval(A, twinAEFit)
C <- mxEval(C, twinAEFit)
E <- mxEval(E, twinAEFit)
#Calculate standardized variance components
V <- (A+C+E)
a2 <- A/V
c2 <- C/V
e2 <- E/V
#Build and print reporting table with row and column names
AEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
AEest <- data.frame(ACEest, row.names=c("Variance Components","Standardized VC"))
names(ACEest)<-c("A", "C", "E")
AEest; LL_AE;
#Calculate and print likelihood ratio test
LRT_ACE_AE <- LL_AE - LL_ACE
LRT_ACE_AE
|