File: UnivariateTwinAnalysis20090925.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (194 lines) | stat: -rw-r--r-- 7,867 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# -----------------------------------------------------------------------
# Program: UnivariateTwinAnalysis20090925.R  
#  Author: Hermine Maes
#    Date: Wed Sep 25 11:45:52 EDT 2009
#
# Revision History
#   Hermine Maes -- Wed Sep 25 11:45:52 EDT 2009 UnivariateTwinAnalysis20090925.R
# 	TBATES: 2017-04-14 04:18PM
# 	Fixed script bug (DataMZ instead of MZ and DataDZ instead of DZ as the data names)
# 	Replace out of date mxFIMLObjective calls
# 	add mxFitFunctionMultigroup(c("MZ", "DZ"))
#   Gave up as there are additional script errors (like using the model object as a string)
# 	and no erorr is identified in this script.
# TODO include equivalent file for mx 1.x 
# TODO: Add omxCheckCloseEnough() calls
# -----------------------------------------------------------------------


# Simulate Data: two standardized variables t1 & t2 for MZ's & DZ's
# -----------------------------------------------------------------------
require(OpenMx)
require(MASS)

set.seed(200)
a2<-0.5		#Additive genetic variance component (a squared)
c2<-0.3		#Common environment variance component (c squared)
e2<-0.2		#Specific environment variance component (e squared)
rMZ <- a2+c2
rDZ <- .5*a2+c2
DataMZ <- mvrnorm(1000, c(0,0), matrix(c(1,rMZ,rMZ,1),2,2))
DataDZ <- mvrnorm(1000, c(0,0), matrix(c(1,rDZ,rDZ,1),2,2))

selVars <- c('t1','t2')
dimnames(DataMZ) <- list(NULL,selVars)
dimnames(DataDZ) <- list(NULL,selVars)
summary(DataMZ)
summary(DataDZ)
colMeans(DataMZ, na.rm=TRUE)
colMeans(DataDZ, na.rm=TRUE)
cov(DataMZ,use="complete")
cov(DataDZ,use="complete")

# Specify and Run Saturated Model with RawData and Matrix-style Input
# -----------------------------------------------------------------------
twinSatModel <- mxModel("twinSat",
	mxModel("MZ",
		mxMatrix("Full", 1, 2, T, c(0,0), dimnames=list(NULL, selVars), name="expMeanMZ"), 
		mxMatrix("Lower", 2, 2, T, .5, dimnames=list(selVars, selVars), name="CholMZ"), 
		mxAlgebra(CholMZ %*% t(CholMZ), name="expCovMZ", dimnames=list(selVars, selVars)), 
		mxData(DataMZ, type="raw"),
		mxExpectationNormal("expCovMZ", "expMeanMZ"),
		mxFitFunctionML()

	),  
	mxModel("DZ",
		mxMatrix("Full", 1, 2, T, c(0,0), dimnames=list(NULL, selVars), name="expMeanDZ"), 
		mxMatrix("Lower", 2, 2, T, .5, dimnames=list(selVars, selVars), name="CholDZ"), 
		mxAlgebra(CholDZ %*% t(CholDZ), name="expCovDZ", dimnames=list(selVars, selVars)), 
		mxData(DataDZ, type="raw"), 
		mxExpectationNormal("expCovDZ", "expMeanDZ"),
		mxFitFunctionML()
	),
	mxFitFunctionMultigroup(c("MZ", "DZ"))
)
twinSatFit <- mxRun(twinSatModel)

# Generate Saturated Model Output
# -----------------------------------------------------------------------
ExpMeanMZ <- mxEval(MZ.expMeanMZ, twinSatFit)
ExpCovMZ  <- mxEval(MZ.expCovMZ,  twinSatFit)
ExpMeanDZ <- mxEval(DZ.expMeanDZ, twinSatFit)
ExpCovDZ  <- mxEval(DZ.expCovDZ,  twinSatFit)
LL_Sat    <- mxEval(objective,    twinSatFit)


# Specify and Run Saturated SubModel 1 equating means across twin order
# -----------------------------------------------------------------------
twinSatModelSub1 <- mxModel(twinSatModel,
	mxModel(MZ, mxMatrix("Full", 1, 2, T, 0, "mMZ", dimnames=list(NULL, selVars), name = "expMeanMZ")), 
	mxModel(DZ, mxMatrix("Full", 1, 2, T, 0, "mDZ", dimnames=list(NULL, selVars), name = "expMeanDZ"))
)
twinSatFitSub1 <- mxRun(twinSatModelSub1)

# Specify and Run Saturated SubModel 2 equating means across twin order and zygosity
# -----------------------------------------------------------------------
twinSatModelSub2 <- mxModel(twinSatModelSub1,
	mxModel("MZ",
		mxMatrix("Full", 1, 2, T, 0, "mean", dimnames=list(NULL, selVars), name="expMeanMZ"), 
		mxMatrix("Lower", 2, 2, T, .5, labels= c("var","MZcov","var"), 
		    dimnames=list(selVars, selVars), name="CholMZ")
	), 
	mxModel("DZ", 
		mxMatrix("Full", 1, 2, T, 0, "mean", dimnames=list(NULL, selVars), name="expMeanDZ"), 
		mxMatrix("Lower", 2, 2, T, .5, labels= c("var","DZcov","var"), 
		    dimnames=list(selVars, selVars), name="CholDZ")
	)
)
twinSatFitSub2 <- mxRun(twinSatModelSub2)

# Generate Saturated Model Comparison Output
# -----------------------------------------------------------------------
LL_Sat  <- mxEval(objective, twinSatFit)
LL_Sub1 <- mxEval(objective, twinSatFitSub1)
LRT1    <- LL_Sub1 - LL_Sat
LL_Sub2 <- mxEval(objective, twinSatFitSub1)
LRT2    <- LL_Sub2 - LL_Sat


# Specify and Run ACE Model with RawData and Matrix-style Input
# -----------------------------------------------------------------------
twinACEModel <- mxModel("twinACE", 
	mxMatrix("Full", 1, 2, T, 20, "mean", dimnames=list(NULL, selVars), name="expMean"), 
		# Matrix expMean for expected mean vector for MZ and DZ twins    
	mxMatrix("Full", nrow=1, ncol=1, free=TRUE, values=.6, label="a", name="X"),
	mxMatrix("Full", nrow=1, ncol=1, free=TRUE, values=.6, label="c", name="Y"),
	mxMatrix("Full", nrow=1, ncol=1, free=TRUE, values=.6, label="e", name="Z"),
		# Matrices X, Y, and Z to store the a, c, and e path coefficients
	mxMatrix("Full", nrow=1, ncol=1, free=FALSE, values=.5, name="h"),
	mxAlgebra(X * t(X), name="A"),
	mxAlgebra(Y * t(Y), name="C"),
	mxAlgebra(Z * t(Z), name="E"),
		# Matrixes A, C, and E to compute A, C, and E variance components
	mxAlgebra(rbind(cbind(A+C+E   , A+C),
					cbind(A+C     , A+C+E)), dimnames = list(selVars, selVars), name="expCovMZ"),
		# Matrix expCOVMZ for expected covariance matrix for MZ twins
	mxAlgebra(rbind(cbind(A+C+E   , h%x%A+C),
					cbind(h%x%A+C , A+C+E)), dimnames = list(selVars, selVars), name="expCovDZ"),
		# Matrix expCOVMZ for expected covariance matrix for DZ twins
	mxModel("MZ",
		mxData(DataMZ, type="raw"), 
		mxFIMLObjective("twinACE.expCovMZ", "twinACE.expMean")),
	mxModel("DZ", 
		mxData(DataDZ, type="raw"), 
		mxFIMLObjective("twinACE.expCovDZ", "twinACE.expMean")),
	mxAlgebra(MZ.objective + DZ.objective, name="twin"), 
	mxFitFunctionAlgebra("twin")
)
twinACEFit <- mxRun(twinACEModel)

# Generate ACE Model Output
# -----------------------------------------------------------------------
LL_ACE <- mxEval(objective, twinACEFit)
LRT_ACE= LL_ACE - LL_Sat

#Retrieve expected mean vector and expected covariance matrices
	MZc <- mxEval(expCovMZ, twinACEFit)
	DZc <- mxEval(expCovDZ, twinACEFit)
	M   <- mxEval(expMean, twinACEFit)
#Retrieve the A, C, and E variance components
	A <- mxEval(A, twinACEFit)
	C <- mxEval(C, twinACEFit)
	E <- mxEval(E, twinACEFit)
#Calculate standardized variance components
	V  <- (A+C+E)
	a2 <- A/V
	c2 <- C/V
	e2 <- E/V
#Build and print reporting table with row and column names
	ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2)) 
	ACEest <- data.frame(ACEest, row.names=c("Variance Components","Standardized VC"))
	names(ACEest)<-c("A", "C", "E")
 	ACEest; LL_ACE; LRT_ACE

# Specify and reduced AE Model (drop c $0)
# -----------------------------------------------------------------------
twinAEModel <- mxModel(twinACEModel, name="twinAE",
    mxMatrix("Full", nrow=1, ncol=1, free=F, values=0, label="c", name="Y")
)
twinAEFit <- mxRun(twinAEModel)

# Generate ACE Model Output
# -----------------------------------------------------------------------
LL_AE <- mxEval(objective, twinAEFit)
#Retrieve expected mean vector and expected covariance matrices
	MZc <- mxEval(expCovMZ, twinAEFit)
	DZc <- mxEval(expCovDZ, twinAEFit)
	M   <- mxEval(expMean, twinAEFit)
#Retrieve the A, C and E variance components
	A <- mxEval(A, twinAEFit)
	C <- mxEval(C, twinAEFit)
	E <- mxEval(E, twinAEFit)
#Calculate standardized variance components
	V <- (A+C+E)
	a2 <- A/V
	c2 <- C/V
	e2 <- E/V
#Build and print reporting table with row and column names
	AEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2)) 
	AEest <- data.frame(ACEest, row.names=c("Variance Components","Standardized VC"))
	names(ACEest)<-c("A", "C", "E")
	AEest; LL_AE; 
#Calculate and print likelihood ratio test
	LRT_ACE_AE <- LL_AE - LL_ACE
	LRT_ACE_AE