1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
#
# Copyright 2007-2018 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ---------------------------------------------------------------------
# Program: 3LatentMultiRegWithModerator100521.R
# Author: Steven M. Boker
# Date: Sat May 22 11:13:51 EDT 2010
#
# This program tests variations on a latent variable multiple regression
# using a standard RAM.
#
# ---------------------------------------------------------------------
# Revision History
# -- Sat May 22 11:13:51 EDT 2010
# Created 3LatentMultiRegWithModerator100521.R.
#
# ---------------------------------------------------------------------
# ----------------------------------
# Read libraries and set options.
library(OpenMx)
options(width=100)
# ---------------------------------------------------------------------
# Data for multiple regression of F3 on F1 and F2 with moderator variable Z.
numberSubjects <- 1000
numberIndicators <- 12
numberFactors <- 3
set.seed(10)
fixedBMatrixF <- matrix(c(.4, .2), 2, 1, byrow=TRUE)
randomBMatrixF <- matrix(c(.3, .5), 2, 1, byrow=TRUE)
XMatrixF <- matrix(rnorm(numberSubjects*2, mean=0, sd=1), numberSubjects, 2)
UMatrixF <- matrix(rnorm(numberSubjects*1, mean=0, sd=1), numberSubjects, 1)
Z <- matrix(floor(runif(numberSubjects, min=0, max=1.999)), nrow=numberSubjects, ncol=2)
XMatrix <- cbind(XMatrixF, XMatrixF %*% fixedBMatrixF + (XMatrixF*Z) %*% randomBMatrixF + UMatrixF)
BMatrix <- matrix(c( 1, .6, .7, .8, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, .5, .6, .7, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, .7, .6, .5), numberFactors, numberIndicators, byrow=TRUE)
UMatrix <- matrix(rnorm(numberSubjects*numberIndicators, mean=0, sd=1), numberSubjects, numberIndicators)
YMatrix <- XMatrix %*% BMatrix + UMatrix
cor(cbind(XMatrix,Z[,1]))
dimnames(YMatrix) <- list(NULL, paste("X", 1:numberIndicators, sep=""))
YMatrixDegraded <- YMatrix
YMatrixDegraded[runif(length(c(YMatrix)), min=0.1, max=1.1) > 1] <- NA
latentMultiRegModerated1 <- data.frame(YMatrixDegraded,Z=Z[,1])
round(cor(latentMultiRegModerated1), 3)
round(cov(latentMultiRegModerated1), 3)
latentMultiRegModerated1$Z <- latentMultiRegModerated1$Z - mean(latentMultiRegModerated1$Z)
numberFactors <- 3
numberIndicators <- 12
numberModerators <- 1
indicators <- paste("X", 1:numberIndicators, sep="")
moderators <- c("Z")
totalVars <- numberIndicators + numberFactors + numberModerators
# ----------------------------------
# Build an orthogonal simple structure factor model
latents <- paste("F", 1:numberFactors, sep="")
uniqueLabels <- paste("U_", indicators, sep="")
meanLabels <- paste("M_", latents, sep="")
factorVarLabels <- paste("Var_", latents, sep="")
latents1 <- latents[1]
indicators1 <- indicators[1:4]
loadingLabels1 <- paste("b_F1", indicators[1:4], sep="")
latents2 <- latents[2]
indicators2 <- indicators[5:8]
loadingLabels2 <- paste("b_F2", indicators[5:8], sep="")
latents3 <- latents[3]
indicators3 <- indicators[9:12]
loadingLabels3 <- paste("b_F3", indicators[9:12], sep="")
threeLatentOrthogonal <- mxModel("threeLatentOrthogonal",
type="RAM",
manifestVars=c(indicators),
latentVars=c(latents,"dummy1"),
mxPath(from=latents1, to=indicators1,
arrows=1, connect="all.pairs",
free=TRUE, values=.2,
labels=loadingLabels1),
mxPath(from=latents2, to=indicators2,
arrows=1, connect="all.pairs",
free=TRUE, values=.2,
labels=loadingLabels2),
mxPath(from=latents3, to=indicators3,
arrows=1, connect="all.pairs",
free=TRUE, values=.2,
labels=loadingLabels3),
mxPath(from=latents1, to=indicators1[1],
arrows=1,
free=FALSE, values=1),
mxPath(from=latents2, to=indicators2[1],
arrows=1,
free=FALSE, values=1),
mxPath(from=latents3, to=indicators3[1],
arrows=1,
free=FALSE, values=1),
mxPath(from=indicators,
arrows=2,
free=TRUE, values=.2,
labels=uniqueLabels),
mxPath(from=latents,
arrows=2,
free=TRUE, values=.8, lbound=1e-2,
labels=factorVarLabels),
mxPath(from="one", to=indicators,
arrows=1, free=FALSE, values=0),
mxPath(from="one", to=c(latents),
arrows=1, free=TRUE, values=.1,
labels=meanLabels),
mxData(observed=latentMultiRegModerated1, type="raw")
)
# ----------------------------------
# Modify to add in direct paths
threeLatentNoModerator <- mxModel(threeLatentOrthogonal,
mxPath(from=c("F1","F2"),to="F3",
arrows=1, lbound=0, ubound = 1,
free=TRUE, values=.2, labels=c("b11", "b12")),
mxPath(from="F1",to="F2",
arrows=2,
free=TRUE, values=.1, labels=c("cF1F2")),
name="threeLatentNoModerator"
)
threeLatentNoModeratorOut <- mxRun(threeLatentNoModerator)
summary(threeLatentNoModeratorOut)
omxCheckCloseEnough(threeLatentNoModeratorOut$output$fit, 34169.31, .1)
|