1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
# Contributed by Charles Driver <driver at mpib-berlin.mpg.de>
#
# Based on:
#
# Manuel C. Voelkle, Johan H. L. Oud, Continuous time modelling with
# individually varying time intervals for oscillating and
# non-oscillating processes British Journal of Mathematical and
# Statistical Psychology Volume 66, Issue 1, pages 103-126.
library(OpenMx)
library(mvtnorm)
#mxOption(NULL, "Default optimizer", "NPSOL")
if (0) {
set.seed(1)
############create data
bivprocesscov<-matrix(c(
0.63,0.24,0.45,0.24,0.33,0.23,0.2,0.2,0.14,0.17,
0.24,0.46,0.24,0.42,0.23,0.38,0.2,0.32,0.17,0.26,
0.45,0.24,0.65,0.24,0.46,0.24,0.26,0.22,0.17,0.19,
0.24,0.42,0.24,0.52,0.25,0.47,0.23,0.39,0.2,0.33,
0.33,0.23,0.46,0.25,0.65,0.25,0.34,0.24,0.21,0.21,
0.23,0.38,0.24,0.47,0.25,0.57,0.26,0.47,0.24,0.39,
0.2,0.2,0.26,0.23,0.34,0.26,0.67,0.28,0.36,0.26,
0.2,0.32,0.22,0.39,0.24,0.47,0.28,0.64,0.29,0.53,
0.14,0.17,0.17,0.2,0.21,0.24,0.36,0.29,0.68,0.31,
0.17,0.26,0.19,0.33,0.21,0.39,0.26,0.53,0.31,0.69),nrow=10)
bivprocessmeans<-c(2.5,2.84,2.57,2.84,2.6,2.84,2.65,2.84,2.66,2.84)
subjects<-500
bivprocess<-mvtnorm::rmvnorm(n=subjects,mean=bivprocessmeans,sigma=bivprocesscov)
colnames(bivprocess)<-paste("V",1:10, sep="")
intervals<-matrix(c(1,1,2,2),byrow=T,nrow=subjects,ncol=4)
intervals<-matrix(rnorm(length(intervals),intervals,.1),ncol=4)
colnames(intervals)<-paste("I",1:4, sep="")
data <- round(cbind(bivprocess,intervals), 3)
write.table(data, file="ct.csv", row.names=FALSE)
} else {
data <- suppressWarnings(try(read.table("models/nightly/data/ContinuousTime.csv", header=TRUE), silent=TRUE))
if (is(data, "try-error")) data <- read.table("data/ContinuousTime.csv", header=TRUE)
}
#########create variables and algebras for openmx
### VARIABLES
manifestV1<-paste("V",seq(1,2*5,2), sep="")
manifestV2<-paste("V",seq(2,2*5,2), sep="")
latentV1<-paste("L1_",seq(1,5,1), sep="")
latentV1r<-paste(latentV1[-1],"r", sep="")
latentV2<-paste("L2_",seq(1,5,1), sep="")
latentV2r<-paste(latentV2[-1],"r", sep="")
### ALGEBRAS
###DRIFT
EXPalgs<-list()
for(i in 1:4){
defcall<-paste("data.I",i, sep="")
algName<-paste("EXPd", i, sep="")
fullAlgString<-paste("omxExponential(DRIFT %x%",defcall,")", sep="")
EXPalgs[i]<- list(eval(substitute(mxAlgebra(theExpression,name = algName),
list(theExpression = parse(text=fullAlgString)[[1]]))))
}
### intercept (INT)
INTalgs<-list()
for(i in 1:4){
algName<-paste("intd", i, sep="")
defcall<-paste("data.I",i, sep="")
fullAlgString<-paste("solve(DRIFT)%*%(omxExponential(DRIFT %x%",defcall,")-II)%*%t(CINT)", sep="")
INTalgs[i]<-list(eval(substitute(mxAlgebra(theExpression,name = algName),
list(theExpression = parse(text=fullAlgString)[[1]]))))
}
### error covariance (Q)
Qdalgs<-list()
for(i in 1:4){
defcall<-paste("data.I",i, sep="")
algName<-paste("Qd", i, sep="")
fullAlgString<-paste("solve(DRIFTHATCH)%*%((omxExponential(DRIFTHATCH %x%",defcall,"))-(II%x%II))%*%rvectorize(Q)", sep="")
Qdalgs[i]<-list(eval(substitute(mxAlgebra(theExpression,name = algName),list(theExpression = parse(text=fullAlgString)[[1]]))))
}
#### OPENMX MODEL
larModel <-mxModel("lar",
mxData(data,type="raw"), ####################### Modify this line to change data file
manifestVars=c(manifestV1,manifestV2),
latentVars=c(latentV1,"i1","L1t",latentV1r,
latentV2,"i2","L2t",latentV2r),
EXPalgs,
Qdalgs,
INTalgs,
mxMatrix(type="Iden", nrow=2, ncol=2, free=FALSE, name="II"),
mxMatrix("Full", values=(matrix(1,2,2)-diag(2)), name = "tempa"),
mxMatrix(type="Full", labels=c("F11","F12","F21","F22"), values=c(-.1,.01,.01,-.2), free=T,nrow=2,ncol=2, name="DRIFT"),
mxCI("DRIFT"),
mxMatrix(type="Full", labels=c("Q11","Q21","Q21","Q22"), values=c(.5,.1,.1,.5), free=T, name="Q",nrow=2,ncol=2),
mxAlgebra(DRIFT%x%II + II%x%DRIFT, name = "DRIFTHATCH"),
mxMatrix("Full", values=(matrix(1,4,4)-diag(4)), name = "tempb"),
mxMatrix(type="Full", labels=c("cint1","cint2"), values=c(2,2), free=T, name="CINT",nrow=1,ncol=2),
#latent to manifest loadings
mxPath(from=c(latentV1,latentV2),
to=c(manifestV1,manifestV2),
connect="single",arrows=1,free=F,values=1),
#manifest means
mxPath(from="one", #set manifest means to 0
to=c(manifestV1,manifestV2),
arrows=1,free=FALSE,values=0),
# add CINT
mxPath(to=c(latentV1[-1]),
from=c("L1t"),
values=NA,free=F,arrows=1,connect="single",labels=paste("intd",1:4,"[",1,",1]", sep="")),
mxPath(to=c(latentV2[-1]),
from=c("L2t"),
values=NA,free=F,arrows=1,connect="single",labels=paste("intd",1:4,"[",2,",1]", sep="")),
# continuous intercept mean
mxPath(from="one",to=c("L1t","L2t"),arrows=1,free=F,values=1),
#initial intercept loadings
mxPath(from="i1",
to=latentV1[1],
arrows=1,values=1,free=F),
mxPath(from="i2",
to=latentV2[1],
arrows=1,values=1,free=F),
#initial intercept means
mxPath(from="one",
to=c("i1","i2"),
arrows=1,free=c(T,T),values=c(.5,.5),
labels=c("m1","m2")),
#intercept variance and cov (phi)
mxPath(from=c("i1","i2"),
connect="unique.pairs",arrows=2,free=T,values=c(.5,.1,.5),
labels=c("phi11","phi21","phi22")),
#AR
mxPath(from=latentV1[-length(latentV1)],
to=latentV1[-1],
arrows=1,free=F,values=NA,connect="single",labels=paste("EXPd",1:4,"[1,1]", sep="")),
mxPath(from=latentV2[-length(latentV2)],
to=latentV2[-1],
arrows=1,free=F,values=NA,connect="single",labels=paste("EXPd",1:4,"[2,2]", sep="")),
# # CL
mxPath(from=latentV1[-length(latentV2)],to=latentV2[-1],
arrows=1,free=F,values=NA, labels=paste("EXPd",1:4,"[2,1]", sep="")),
mxPath(from=latentV2[-length(latentV2)],to=latentV1[-1],
arrows=1,free=F,values=NA,labels=paste("EXPd",1:4,"[1,2]", sep="")),
#add latent disturbances
mxPath(to=latentV1[-1],from=latentV1r,
connect="single",free=F,arrows=1,values=1),
mxPath(to=latentV2[-1],from=latentV2r,
connect="single",arrows=1,free=F,values=1),
#latent disturbance variance
mxPath(from=latentV1r,free=F,values=NA,arrows=2,labels=paste("Qd",1:4,"[1,1]", sep="")),
mxPath(from=latentV2r,arrows=2,free=F,values=NA,labels=paste("Qd",1:4,"[4,1]", sep="")),
#disturbance cross correlations between same time point
mxPath(from=c(latentV1r,latentV2r),to=c(latentV2r,latentV1r),
arrows=2,free=F,values=NA,connect="single",labels=paste("Qd",1:4,"[2,1]", sep="")),
type="RAM")
larModel <- mxOption(larModel, "Calculate Hessian", "No")
larModel <- mxOption(larModel, "Standard Errors", "No")
#larModel <- mxOption(larModel, "Number of Threads", 1L)
larFit <- mxModel(larModel, mxComputeOnce('fitfunction', 'fit'))
got <- mxRun(larFit, silent=TRUE)
omxCheckCloseEnough(got$output$fit, 43550.90, .01)
larModel <- mxOption(larModel, "Feasibility tolerance", 2e-2)
testfit<-mxRun(larModel, intervals = TRUE)
omxCheckCloseEnough(testfit$output$fit, 8383.78, .1)
#cat(deparse(round(testfit$output$estimate,3)))
est <- c(0.675, 0.266, 0.466, 2.496, 2.858, -0.464, 0.056, 0.246, -0.131, 0.526, -0.014, 0.164, 0.524, 0.224)
if (0) {
testfit$output$estimate - est
max(abs(testfit$output$estimate - est))
}
omxCheckCloseEnough(testfit$output$estimate, est, .01)
ci <- testfit$output$confidenceIntervals
#cat(deparse(round(ci[,'ubound'], 4)))
omxCheckCloseEnough(ci[,'lbound'], c(-0.518, 0.1997, 0.0282, -0.1568), .03)
omxCheckCloseEnough(ci[,'ubound'], c(-0.4135, 0.2948, 0.0837, -0.1062), .03)
if (0) {
omxCheckCloseEnough(testfit$output$iterations, 9, 1)
omxCheckCloseEnough(testfit$output$status$code, -1)
}
|