1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
# Program: ExtremeMultiformity_Mdd_Can.R
# Models of Comorbidity for Multifactorial Disorders; Michael C. Neale & Kenneth S. Kendler
# A. J. Hum. Genet. 57:935-953, 1995
#
# This is a useful regression test because at starting values
# omxAllInt returns probabilities that are exactly zero.
#
# ****************
# Extreme Multiformity
# ****************
library(OpenMx)
mxOption(key="feasibility tolerance", value = .001)
nv <- 1
MZtot <- 565
DZtot <- 641
# --------------------------------------------------------------------------------
# Fit Extreme Multiformity Model with Cell Frequencies Input, ONE overall Threshold
# --------------------------------------------------------------------------------
# Specify objects to store a, c, e path coefficients
pathAf1 <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.6, label="a11", name="af1")
pathCf1 <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.4, label="c11", name="cf1")
pathEf1 <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.6, label="e11", name="ef1")
pathAf2 <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.6, label="a12", name="af2")
pathCf2 <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.4, label="c12", name="cf2")
pathEf2 <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.6, label="e12", name="ef2")
# Matrices A, C, and E compute variance components
covAf1 <- mxAlgebra( expression=a11 %*% t(a11), name="Af1")
covCf1 <- mxAlgebra( expression=c11 %*% t(c11), name="Cf1")
covEf1 <- mxAlgebra( expression=e11 %*% t(e11), name="Ef1")
covVf1 <- mxAlgebra( expression=Af1+Cf1+Ef1, name="Vf1")
covAf2 <- mxAlgebra( expression=a12 %*% t(a12), name="Af2")
covCf2 <- mxAlgebra( expression=c12 %*% t(c12), name="Cf2")
covEf2 <- mxAlgebra( expression=e12 %*% t(e12), name="Ef2")
covVf2 <- mxAlgebra( expression=Af2+Cf2+Ef2, name="Vf2")
# Constraint on variance of ordinal variables
matI <- mxMatrix( type="Iden", nrow=nv, ncol=nv, name="I")
conf1 <- mxConstraint( expression=diag2vec(Vf1)==I, name="Varf1")
conf2 <- mxConstraint( expression=diag2vec(Vf2)==I, name="Varf2")
# Matrix & Algebra for expected means vector
Meanf1 <- mxMatrix( type="Zero", nrow=1, ncol=2, name="expMeanf1" )
Meanf2 <- mxMatrix( type="Zero", nrow=1, ncol=2, name="expMeanf2" )
# Algebra for expected variance/covariance matrix in MZ & DZ pairs
covMZf1 <- mxAlgebra( expression= rbind ( cbind(Af1+Cf1+Ef1 , Af1+Cf1) ,cbind(Af1+Cf1 , Af1+Cf1+Ef1)), name="expCovMZf1" )
covDZf1 <- mxAlgebra( expression= rbind ( cbind(Af1+Cf1+Ef1 , 0.5%x%Af1+Cf1) ,cbind(0.5%x%Af1+Cf1 , Af1+Cf1+Ef1)), name="expCovDZf1" )
covMZf2 <- mxAlgebra( expression= rbind ( cbind(Af2+Cf2+Ef2 , Af2+Cf2) ,cbind(Af2+Cf2 , Af2+Cf2+Ef2)), name="expCovMZf2" )
covDZf2 <- mxAlgebra( expression= rbind ( cbind(Af2+Cf2+Ef2 , 0.5%x%Af2+Cf2) ,cbind(0.5%x%Af2+Cf2 , Af2+Cf2+Ef2)), name="expCovDZf2" )
# Matrix & Algebra for expected thresholds
# Matrices for thresholds two each for Factors 1 and 2, and a matrix for means
inf <- mxMatrix( type="Full", nrow=1, ncol=1, free=F, values=Inf, name="infinity")
Tsf1 <- mxMatrix( type="Full", nrow=2, ncol=1, free=TRUE, values=c(.8, .2), label=c("thr1f1","deltathr2f1"), lbound=c(-Inf,0.0001),name="P" )
Tsf2 <- mxMatrix( type="Full", nrow=2, ncol=1, free=TRUE, values=c(.6,.3), label=c("thr1f2","deltathr2f2"), lbound=c(-Inf,0.0001),name="R" )
inc <- mxMatrix( type="Lower", nrow=2, ncol=2, free=FALSE, values=1, name="Incrementer")
Thresf1 <- mxAlgebra( expression=rbind(-infinity,Incrementer%*%P,infinity),name="thresholdsFactor1")
Thresf2 <- mxAlgebra( expression=rbind(-infinity,Incrementer%*%R,infinity),name="thresholdsFactor2")
# ??????
# ??????
incrTf1 <-mxAlgebra( cbind(thresholdsFactor1, thresholdsFactor1), name="increasingThresholdsf1")
incrTf2 <-mxAlgebra( cbind(thresholdsFactor2, thresholdsFactor2), name="increasingThresholdsf2")
AllintMZf1 <- mxAlgebra(omxAllInt(expCovMZf1, expMeanf1, increasingThresholdsf1), name="AllintMZf1")
AllintMZf2 <- mxAlgebra(omxAllInt(expCovMZf2, expMeanf2, increasingThresholdsf2), name="AllintMZf2")
AllintDZf1 <- mxAlgebra(omxAllInt(expCovDZf1, expMeanf1, increasingThresholdsf1), name="AllintDZf1")
AllintDZf2 <- mxAlgebra(omxAllInt(expCovDZf2, expMeanf2, increasingThresholdsf2), name="AllintDZf2")
# Using algebras to extract each of the 6 integrals on the diagonal and below
#MZ
CMZ <- mxAlgebra(expression=AllintMZf1[1,1], name="CMZ")
DMZ <- mxAlgebra(expression=AllintMZf1[2,1], name="DMZ")
EMZ <- mxAlgebra(expression=AllintMZf1[3,1], name="EMZ")
FMZ <- mxAlgebra(expression=AllintMZf1[5,1], name="FMZ")
GMZ <- mxAlgebra(expression=AllintMZf1[6,1], name="GMZ")
HMZ <- mxAlgebra(expression=AllintMZf1[9,1], name="HMZ")
IMZ <- mxAlgebra(expression=AllintMZf2[1,1], name="IMZ")
JMZ <- mxAlgebra(expression=AllintMZf2[2,1], name="JMZ")
KMZ <- mxAlgebra(expression=AllintMZf2[3,1], name="KMZ")
LMZ <- mxAlgebra(expression=AllintMZf2[5,1], name="LMZ")
MMZ <- mxAlgebra(expression=AllintMZf2[6,1], name="MMZ")
NMZ <- mxAlgebra(expression=AllintMZf2[9,1], name="NMZ")
#DZ
CDZ <- mxAlgebra(expression=AllintDZf1[1,1], name="CDZ")
DDZ <- mxAlgebra(expression=AllintDZf1[2,1], name="DDZ")
EDZ <- mxAlgebra(expression=AllintDZf1[3,1], name="EDZ")
FDZ <- mxAlgebra(expression=AllintDZf1[5,1], name="FDZ")
GDZ <- mxAlgebra(expression=AllintDZf1[6,1], name="GDZ")
HDZ <- mxAlgebra(expression=AllintDZf1[9,1], name="HDZ")
IDZ <- mxAlgebra(expression=AllintDZf2[1,1], name="IDZ")
JDZ <- mxAlgebra(expression=AllintDZf2[2,1], name="JDZ")
KDZ <- mxAlgebra(expression=AllintDZf2[3,1], name="KDZ")
LDZ <- mxAlgebra(expression=AllintDZf2[5,1], name="LDZ")
MDZ <- mxAlgebra(expression=AllintDZf2[6,1], name="MDZ")
NDZ <- mxAlgebra(expression=AllintDZf2[9,1], name="NDZ")
# Working out the Expected Frequencies
MZexpFr <- mxAlgebra(rbind(
CMZ*IMZ ,
2.0*(CMZ*JMZ) ,
2.0*(DMZ*IMZ) ,
2.0*(EMZ*(IMZ+JMZ+KMZ) + DMZ*(JMZ+KMZ) + CMZ*KMZ) ,
CMZ*LMZ ,
2.0*(DMZ*JMZ) ,
2.0*(EMZ*(JMZ+LMZ+MMZ) + DMZ*(LMZ+MMZ) + CMZ*MMZ) ,
FMZ*IMZ ,
2.0*(GMZ*(IMZ+JMZ+KMZ) +FMZ*(JMZ+KMZ) + DMZ*KMZ) ,
HMZ + NMZ - HMZ*NMZ + GMZ*(JMZ+KMZ+LMZ+MMZ+MMZ) + EMZ*(KMZ+MMZ) + GMZ*(JMZ+LMZ+MMZ+KMZ+MMZ) + FMZ*(LMZ+MMZ+MMZ) +
DMZ*MMZ + EMZ*(KMZ+MMZ) + DMZ*MMZ), name="MZExpectedProb" )
# The DZ model
# Working out the Expected Frequencies
DZexpFr <- mxAlgebra(rbind(
CDZ*IDZ ,
2.0*(CDZ*JDZ) ,
2.0*(DDZ*IDZ) ,
2.0*(EDZ*(IDZ+JDZ+KDZ) + DDZ*(JDZ+KDZ) + CDZ*KDZ) ,
CDZ*LDZ ,
2.0*(DDZ*JDZ) ,
2.0*(EDZ*(JDZ+LDZ+MDZ) + DDZ*(LDZ+MDZ) + CDZ*MDZ) ,
FDZ*IDZ ,
2.0*(GDZ*(IDZ+JDZ+KDZ) +FDZ*(JDZ+KDZ) + DDZ*KDZ) ,
HDZ + NDZ - HDZ*NDZ + GDZ*(JDZ+KDZ+LDZ+MDZ+MDZ) + EDZ*(KDZ+MDZ) + GDZ*(JDZ+LDZ+MDZ+KDZ+MDZ) + FDZ*(LDZ+MDZ+MDZ) +
DDZ*MDZ + EDZ*(KDZ+MDZ) + DDZ*MDZ), name="DZExpectedProb" )
Munit <- mxMatrix( type="Unit", nrow=10, ncol=1, name="mU10")
MZOfreq <- mxAlgebra( MZExpectedProb * (mU10 %x% MZtot), name="MZExpectedFrequencies" )
DZOfreq <- mxAlgebra( DZExpectedProb * (mU10 %x% DZtot), name="DZExpectedFrequencies" )
# DATA: cell Frequency inputs
dataMZ <- mxMatrix(type="Full", nrow=10, ncol=1, free=FALSE, values=c(273,96,46,23,39,9,12,23,25,19), name="MZObservedFrequencies")
dataDZ <- mxMatrix(type="Full", nrow=10, ncol=1, free=FALSE, values=c(251,109,74,52,26,29,18,35,35,12), name="DZObservedFrequencies")
# Specify the User Defined Fitfunctions for each group: likelihood
#objMZ <- mxAlgebra( -2 * sum(MZObservedFrequencies * log(MZExpectedFrequencies)),name="MZobj")
#objDZ <- mxAlgebra( -2 * sum(DZObservedFrequencies * log(DZExpectedFrequencies)),name="DZobj")
# Specify the User Defined Fitfunctions for each group: Chi-square
objMZ <- mxAlgebra(sum ( ( (MZObservedFrequencies - MZExpectedFrequencies) * (MZObservedFrequencies - MZExpectedFrequencies))/MZExpectedFrequencies ), name="MZobj")
objDZ <- mxAlgebra(sum ( ( (DZObservedFrequencies - DZExpectedFrequencies) * (DZObservedFrequencies - DZExpectedFrequencies))/DZExpectedFrequencies ), name="DZobj")
# Combine Groups
pars <- list(pathAf1, pathCf1, pathEf1, pathAf2, pathCf2, pathEf2, covAf1, covCf1, covEf1, covVf1, covAf2, covCf2, covEf2, covVf2, matI, Meanf1, Meanf2, Tsf1,Tsf2,inc, Thresf1, Thresf2,incrTf1,incrTf2,inf, Munit)
modelMZ <- mxModel(pars, covMZf1, covMZf2, AllintMZf1,AllintMZf2,CMZ,DMZ,EMZ,FMZ,GMZ,HMZ,IMZ,JMZ,KMZ,LMZ,MMZ,NMZ,MZexpFr, dataMZ, objMZ, MZOfreq, conf1, conf2,name="MZ")
modelDZ <- mxModel(pars, covDZf1, covDZf2, AllintDZf1,AllintDZf2,CDZ,DDZ,EDZ,FDZ,GDZ,HDZ,IDZ,JDZ,KDZ,LDZ,MDZ,NDZ,DZexpFr, dataDZ, objDZ, DZOfreq, name="DZ")
minus2ll <- mxAlgebra(expression=MZ.MZobj + DZ.DZobj, name="ChiSq")
obj <- mxFitFunctionAlgebra("ChiSq")
ConfACE <- mxCI (c ('MZ.Af1[1,1]', 'MZ.Cf1[1,1]', 'MZ.Ef1[1,1]',
'MZ.Af2[1,1]', 'MZ.Cf2[1,1]', 'MZ.Ef2[1,1]'))
ExtremeMultiformityModel <-mxModel("ExtremeMultiformity", pars, modelMZ, modelDZ, minus2ll, obj,ConfACE)
#ExtremeMultiformityRun<-mxTryHardOrdinal(ExtremeMultiformityModel, greenOK = TRUE, checkHess = FALSE, finetuneGradient=FALSE, exhaustive=TRUE, OKstatuscodes=c(0,1,5,6), wtgcsv=c("prev"),intervals=F )
ExtremeMultiformityFit <- mxRun(ExtremeMultiformityModel, intervals=T)
(ExtremeMultiformitySumm <- summary(ExtremeMultiformityFit))
omxCheckCloseEnough(mxEval(MZ.Af1, ExtremeMultiformityFit), 0.5434, .05)
omxCheckCloseEnough(mxEval(MZ.Af2, ExtremeMultiformityFit), 0.4425, .05)
omxCheckCloseEnough(mxEval(MZ.Cf1, ExtremeMultiformityFit), 0.2537, .05)
omxCheckCloseEnough(mxEval(MZ.Cf2, ExtremeMultiformityFit), 0, 1e-2)
omxCheckCloseEnough(mxEval(MZ.Ef1, ExtremeMultiformityFit), 0.2028, .05)
omxCheckCloseEnough(mxEval(MZ.Ef2, ExtremeMultiformityFit), 0.5574, .05)
# ******************************************************
# Get Chi Square
(chisquare <-mxEval(objective,ExtremeMultiformityFit))
# Work out degrees of freedom
pTable <-data.frame(ExtremeMultiformitySumm$parameters)
(np <-nrow(pTable))
(df <-20-np)
# Work out p-value
# Note: pchisq(q,df) is a distribution function in R
(pvalue <-pchisq(chisquare,df,lower.tail=FALSE))
# -------------------------------------------------------------------------------------------------------------------------------------
# Sub1 model: delta put to extremely high value, Extreme Multiformity of first disorder only
# --------------------------------------------------------------------------------------------------------------------------------------
sub1Model <- mxModel(ExtremeMultiformityFit, name="sub1")
sub1Model <- omxSetParameters(sub1Model, labels="deltathr2f2", free=F, values=6)
sub1Fit <- mxRun(sub1Model, intervals=T)
(sub1Summ <- summary(sub1Fit))
# -------------------------------------------------------------------------------------------------------------------------------------
# ******************************************************
# Get Chi Square
(chisquare <-mxEval(objective,sub1Fit))
# Work out degrees of freedom
pTable <-data.frame(sub1Summ$parameters)
(np <-nrow(pTable))
(df <-20-np)
# Work out p-value
# Note: pchisq(q,df) is a distribution function in R
(pvalue <-pchisq(chisquare,df,lower.tail=FALSE))
# -------------------------------------------------------------------------------------------------------------------------------------
# Sub2 model: delta put to extremely high value, Extreme Multiformity of second disorder only
# --------------------------------------------------------------------------------------------------------------------------------------
sub2Model <- mxModel(ExtremeMultiformityFit, name="sub2")
sub2Model <- omxSetParameters(sub2Model, labels="deltathr2f1", free=F, values=6)
sub2Fit <- mxRun(sub2Model,intervals=T)
(sub2Summ <- summary(sub2Fit))
# -------------------------------------------------------------------------------------------------------------------------------------
# ******************************************************
# Get Chi Square
(chisquare <-mxEval(objective,sub2Fit))
omxCheckCloseEnough(chisquare, 37.3105, 1e-2)
# Work out degrees of freedom
pTable <-data.frame(sub2Summ$parameters)
(np <-nrow(pTable))
(df <-20-np)
# Work out p-value
# Note: pchisq(q,df) is a distribution function in R
(pvalue <-pchisq(chisquare,df,lower.tail=FALSE))
omxCheckCloseEnough(log(pvalue), -9.188, 1e-2)
# -------------------------------------------------------------------------------------------------------------------------------------
# Test that math is correct by checking whether probabilties add up to 1
# --------------------------------------------------------------------------------------------------------------------------------------
oneTableDZ <- data.frame(ExtremeMultiformityFit$output$algebras$DZ.DZExpectedProb)
oneTableMZ <- data.frame(ExtremeMultiformityFit$output$algebras$MZ.MZExpectedProb)
(sumDZprob <- colSums (oneTableDZ, na.rm = FALSE, dims = 1))
(sumMZprob <- colSums (oneTableMZ, na.rm = FALSE, dims = 1))
omxCheckCloseEnough(sumDZprob, 1, 1e-5)
omxCheckCloseEnough(sumMZprob, 1, 1e-5)
|