File: Extreme_Multiformity_chi.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (261 lines) | stat: -rw-r--r-- 13,155 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Program: ExtremeMultiformity_Mdd_Can.R
# Models of Comorbidity for Multifactorial Disorders; Michael C. Neale & Kenneth S. Kendler
# A. J. Hum. Genet. 57:935-953, 1995
#
# This is a useful regression test because at starting values
# omxAllInt returns probabilities that are exactly zero.
#
# ****************
# Extreme Multiformity
# ****************

library(OpenMx)

mxOption(key="feasibility tolerance", value = .001)

nv                <- 1
MZtot		<- 565
DZtot		<- 641

# --------------------------------------------------------------------------------
# Fit Extreme Multiformity Model with Cell Frequencies Input, ONE overall Threshold
# --------------------------------------------------------------------------------

# Specify objects to store a, c, e path coefficients
pathAf1 <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.6, label="a11", name="af1")
pathCf1	<- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.4, label="c11", name="cf1")
pathEf1	<- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.6, label="e11", name="ef1")

pathAf2 <- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.6, label="a12", name="af2")
pathCf2	<- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.4, label="c12", name="cf2")
pathEf2	<- mxMatrix( type="Full", nrow=nv, ncol=nv, free=T, values=.6, label="e12", name="ef2")

# Matrices A, C, and E compute variance components
covAf1	<- mxAlgebra( expression=a11 %*% t(a11), name="Af1")
covCf1	<- mxAlgebra( expression=c11 %*% t(c11), name="Cf1")
covEf1	<- mxAlgebra( expression=e11 %*% t(e11), name="Ef1")
covVf1	<- mxAlgebra( expression=Af1+Cf1+Ef1, name="Vf1")

covAf2  	<- mxAlgebra( expression=a12 %*% t(a12), name="Af2")
covCf2	<- mxAlgebra( expression=c12 %*% t(c12), name="Cf2")
covEf2	<- mxAlgebra( expression=e12 %*% t(e12), name="Ef2")
covVf2	<- mxAlgebra( expression=Af2+Cf2+Ef2, name="Vf2")

# Constraint on variance of ordinal variables
matI	<- mxMatrix( type="Iden", nrow=nv, ncol=nv, name="I")
conf1	<- mxConstraint( expression=diag2vec(Vf1)==I, name="Varf1")
conf2	<- mxConstraint( expression=diag2vec(Vf2)==I, name="Varf2")


# Matrix & Algebra for expected means vector
Meanf1	<- mxMatrix( type="Zero", nrow=1, ncol=2, name="expMeanf1" )
Meanf2  <- mxMatrix( type="Zero", nrow=1, ncol=2, name="expMeanf2" )

# Algebra for expected variance/covariance matrix in MZ & DZ pairs
covMZf1	<- mxAlgebra( expression= rbind  ( cbind(Af1+Cf1+Ef1 , Af1+Cf1)		,cbind(Af1+Cf1   , Af1+Cf1+Ef1)), name="expCovMZf1" )
covDZf1	<- mxAlgebra( expression= rbind  ( cbind(Af1+Cf1+Ef1 , 0.5%x%Af1+Cf1)	,cbind(0.5%x%Af1+Cf1 , Af1+Cf1+Ef1)),  name="expCovDZf1" )

covMZf2 <- mxAlgebra( expression= rbind  ( cbind(Af2+Cf2+Ef2 , Af2+Cf2)		,cbind(Af2+Cf2   , Af2+Cf2+Ef2)), name="expCovMZf2" )
covDZf2	<- mxAlgebra( expression= rbind  ( cbind(Af2+Cf2+Ef2 , 0.5%x%Af2+Cf2)	,cbind(0.5%x%Af2+Cf2 , Af2+Cf2+Ef2)),  name="expCovDZf2" )

# Matrix & Algebra for expected thresholds

# Matrices for thresholds two each for Factors 1 and 2, and a matrix for means
inf   	<- mxMatrix( type="Full", nrow=1, ncol=1, free=F, values=Inf, name="infinity")
Tsf1 		<- mxMatrix( type="Full", nrow=2, ncol=1, free=TRUE, values=c(.8, .2), label=c("thr1f1","deltathr2f1"), lbound=c(-Inf,0.0001),name="P" )
Tsf2 		<- mxMatrix( type="Full", nrow=2, ncol=1, free=TRUE, values=c(.6,.3), label=c("thr1f2","deltathr2f2"), lbound=c(-Inf,0.0001),name="R" )
inc     	<- mxMatrix( type="Lower", nrow=2, ncol=2, free=FALSE, values=1, name="Incrementer")
Thresf1 	<- mxAlgebra( expression=rbind(-infinity,Incrementer%*%P,infinity),name="thresholdsFactor1")
Thresf2 	<- mxAlgebra( expression=rbind(-infinity,Incrementer%*%R,infinity),name="thresholdsFactor2")

# ??????
# ??????
incrTf1 <-mxAlgebra( cbind(thresholdsFactor1, thresholdsFactor1), name="increasingThresholdsf1")
incrTf2 <-mxAlgebra( cbind(thresholdsFactor2, thresholdsFactor2), name="increasingThresholdsf2")
AllintMZf1 <- mxAlgebra(omxAllInt(expCovMZf1, expMeanf1, increasingThresholdsf1), name="AllintMZf1")
AllintMZf2 <- mxAlgebra(omxAllInt(expCovMZf2, expMeanf2, increasingThresholdsf2), name="AllintMZf2")
AllintDZf1 <- mxAlgebra(omxAllInt(expCovDZf1, expMeanf1, increasingThresholdsf1), name="AllintDZf1")
AllintDZf2 <- mxAlgebra(omxAllInt(expCovDZf2, expMeanf2, increasingThresholdsf2), name="AllintDZf2")

# Using algebras to extract each of the 6 integrals on the diagonal and below
#MZ
CMZ <- mxAlgebra(expression=AllintMZf1[1,1], name="CMZ")
DMZ <- mxAlgebra(expression=AllintMZf1[2,1], name="DMZ")
EMZ <- mxAlgebra(expression=AllintMZf1[3,1], name="EMZ")
FMZ <- mxAlgebra(expression=AllintMZf1[5,1], name="FMZ")
GMZ <- mxAlgebra(expression=AllintMZf1[6,1], name="GMZ")
HMZ <- mxAlgebra(expression=AllintMZf1[9,1], name="HMZ")

IMZ <- mxAlgebra(expression=AllintMZf2[1,1], name="IMZ")
JMZ <- mxAlgebra(expression=AllintMZf2[2,1], name="JMZ")
KMZ <- mxAlgebra(expression=AllintMZf2[3,1], name="KMZ")
LMZ <- mxAlgebra(expression=AllintMZf2[5,1], name="LMZ")
MMZ <- mxAlgebra(expression=AllintMZf2[6,1], name="MMZ")
NMZ <- mxAlgebra(expression=AllintMZf2[9,1], name="NMZ")

#DZ
CDZ <- mxAlgebra(expression=AllintDZf1[1,1], name="CDZ")
DDZ <- mxAlgebra(expression=AllintDZf1[2,1], name="DDZ")
EDZ <- mxAlgebra(expression=AllintDZf1[3,1], name="EDZ")
FDZ <- mxAlgebra(expression=AllintDZf1[5,1], name="FDZ")
GDZ <- mxAlgebra(expression=AllintDZf1[6,1], name="GDZ")
HDZ <- mxAlgebra(expression=AllintDZf1[9,1], name="HDZ")

IDZ <- mxAlgebra(expression=AllintDZf2[1,1], name="IDZ")
JDZ <- mxAlgebra(expression=AllintDZf2[2,1], name="JDZ")
KDZ <- mxAlgebra(expression=AllintDZf2[3,1], name="KDZ")
LDZ <- mxAlgebra(expression=AllintDZf2[5,1], name="LDZ")
MDZ <- mxAlgebra(expression=AllintDZf2[6,1], name="MDZ")
NDZ <- mxAlgebra(expression=AllintDZf2[9,1], name="NDZ")

# Working out the Expected Frequencies
MZexpFr	        <- mxAlgebra(rbind(
        CMZ*IMZ ,
        2.0*(CMZ*JMZ) ,
        2.0*(DMZ*IMZ) ,
        2.0*(EMZ*(IMZ+JMZ+KMZ) + DMZ*(JMZ+KMZ) + CMZ*KMZ) ,
        CMZ*LMZ ,
        2.0*(DMZ*JMZ) ,
        2.0*(EMZ*(JMZ+LMZ+MMZ) + DMZ*(LMZ+MMZ) + CMZ*MMZ) ,
        FMZ*IMZ ,
        2.0*(GMZ*(IMZ+JMZ+KMZ) +FMZ*(JMZ+KMZ) + DMZ*KMZ) ,
        HMZ + NMZ - HMZ*NMZ + GMZ*(JMZ+KMZ+LMZ+MMZ+MMZ) + EMZ*(KMZ+MMZ) + GMZ*(JMZ+LMZ+MMZ+KMZ+MMZ) + FMZ*(LMZ+MMZ+MMZ) +
                DMZ*MMZ + EMZ*(KMZ+MMZ) + DMZ*MMZ), name="MZExpectedProb" )

# The DZ model
# Working out the Expected Frequencies
DZexpFr         <- mxAlgebra(rbind(
        CDZ*IDZ ,
        2.0*(CDZ*JDZ) ,
        2.0*(DDZ*IDZ) ,
        2.0*(EDZ*(IDZ+JDZ+KDZ) + DDZ*(JDZ+KDZ) + CDZ*KDZ) ,
        CDZ*LDZ ,
        2.0*(DDZ*JDZ) ,
        2.0*(EDZ*(JDZ+LDZ+MDZ) + DDZ*(LDZ+MDZ) + CDZ*MDZ) ,
        FDZ*IDZ ,
        2.0*(GDZ*(IDZ+JDZ+KDZ) +FDZ*(JDZ+KDZ) + DDZ*KDZ) ,
        HDZ + NDZ - HDZ*NDZ + GDZ*(JDZ+KDZ+LDZ+MDZ+MDZ) + EDZ*(KDZ+MDZ) + GDZ*(JDZ+LDZ+MDZ+KDZ+MDZ) + FDZ*(LDZ+MDZ+MDZ) +
                DDZ*MDZ + EDZ*(KDZ+MDZ) + DDZ*MDZ), name="DZExpectedProb" )

Munit   	<- mxMatrix( type="Unit", nrow=10, ncol=1, name="mU10")
MZOfreq	<- mxAlgebra( MZExpectedProb * (mU10 %x% MZtot), name="MZExpectedFrequencies" )
DZOfreq	<- mxAlgebra( DZExpectedProb * (mU10 %x% DZtot), name="DZExpectedFrequencies" )

# DATA: cell Frequency inputs
dataMZ	<- mxMatrix(type="Full", nrow=10, ncol=1, free=FALSE, values=c(273,96,46,23,39,9,12,23,25,19), name="MZObservedFrequencies")
dataDZ	<- mxMatrix(type="Full", nrow=10, ncol=1, free=FALSE, values=c(251,109,74,52,26,29,18,35,35,12), name="DZObservedFrequencies")

# Specify the User Defined Fitfunctions for each group: likelihood
#objMZ	<- mxAlgebra( -2 * sum(MZObservedFrequencies * log(MZExpectedFrequencies)),name="MZobj")
#objDZ	<- mxAlgebra( -2 * sum(DZObservedFrequencies * log(DZExpectedFrequencies)),name="DZobj")

# Specify the User Defined Fitfunctions for each group: Chi-square
objMZ	<- mxAlgebra(sum ( (  (MZObservedFrequencies - MZExpectedFrequencies) * (MZObservedFrequencies - MZExpectedFrequencies))/MZExpectedFrequencies ), name="MZobj")
objDZ	<- mxAlgebra(sum ( (  (DZObservedFrequencies - DZExpectedFrequencies) * (DZObservedFrequencies - DZExpectedFrequencies))/DZExpectedFrequencies ), name="DZobj")


# Combine Groups
pars		<- list(pathAf1, pathCf1, pathEf1, pathAf2, pathCf2, pathEf2, covAf1, covCf1, covEf1, covVf1, covAf2, covCf2, covEf2, covVf2, matI,  Meanf1, Meanf2, Tsf1,Tsf2,inc, Thresf1, Thresf2,incrTf1,incrTf2,inf, Munit)
modelMZ	<- mxModel(pars, covMZf1, covMZf2, AllintMZf1,AllintMZf2,CMZ,DMZ,EMZ,FMZ,GMZ,HMZ,IMZ,JMZ,KMZ,LMZ,MMZ,NMZ,MZexpFr, dataMZ, objMZ, MZOfreq, conf1, conf2,name="MZ")
modelDZ	<- mxModel(pars, covDZf1, covDZf2, AllintDZf1,AllintDZf2,CDZ,DDZ,EDZ,FDZ,GDZ,HDZ,IDZ,JDZ,KDZ,LDZ,MDZ,NDZ,DZexpFr, dataDZ, objDZ, DZOfreq, name="DZ")
minus2ll	<- mxAlgebra(expression=MZ.MZobj + DZ.DZobj, name="ChiSq")
obj		<- mxFitFunctionAlgebra("ChiSq")
ConfACE         <- mxCI (c ('MZ.Af1[1,1]', 'MZ.Cf1[1,1]', 'MZ.Ef1[1,1]',
                            'MZ.Af2[1,1]', 'MZ.Cf2[1,1]', 'MZ.Ef2[1,1]'))
ExtremeMultiformityModel	<-mxModel("ExtremeMultiformity", pars, modelMZ, modelDZ, minus2ll, obj,ConfACE)

#ExtremeMultiformityRun<-mxTryHardOrdinal(ExtremeMultiformityModel, greenOK = TRUE, checkHess = FALSE, finetuneGradient=FALSE, exhaustive=TRUE, OKstatuscodes=c(0,1,5,6), wtgcsv=c("prev"),intervals=F )

ExtremeMultiformityFit		<- mxRun(ExtremeMultiformityModel, intervals=T)

(ExtremeMultiformitySumm		<- summary(ExtremeMultiformityFit))

omxCheckCloseEnough(mxEval(MZ.Af1, ExtremeMultiformityFit), 0.5434, .05)
omxCheckCloseEnough(mxEval(MZ.Af2, ExtremeMultiformityFit), 0.4425, .05)
omxCheckCloseEnough(mxEval(MZ.Cf1, ExtremeMultiformityFit), 0.2537, .05)
omxCheckCloseEnough(mxEval(MZ.Cf2, ExtremeMultiformityFit), 0, 1e-2)
omxCheckCloseEnough(mxEval(MZ.Ef1, ExtremeMultiformityFit), 0.2028, .05)
omxCheckCloseEnough(mxEval(MZ.Ef2, ExtremeMultiformityFit), 0.5574, .05)

# ******************************************************
# Get Chi Square
(chisquare	<-mxEval(objective,ExtremeMultiformityFit))

# Work out degrees of freedom
pTable	<-data.frame(ExtremeMultiformitySumm$parameters)
(np		<-nrow(pTable))
(df		<-20-np)

# Work out p-value
#  Note: pchisq(q,df) is a distribution function in R
(pvalue	<-pchisq(chisquare,df,lower.tail=FALSE))


# -------------------------------------------------------------------------------------------------------------------------------------
# Sub1 model: delta put to extremely high value, Extreme Multiformity of first disorder only
# --------------------------------------------------------------------------------------------------------------------------------------


sub1Model	<- mxModel(ExtremeMultiformityFit, name="sub1")
sub1Model	<- omxSetParameters(sub1Model, labels="deltathr2f2", free=F, values=6)
sub1Fit	<- mxRun(sub1Model, intervals=T)
(sub1Summ	<- summary(sub1Fit))

# -------------------------------------------------------------------------------------------------------------------------------------

# ******************************************************
# Get Chi Square
(chisquare	<-mxEval(objective,sub1Fit))

# Work out degrees of freedom
pTable	<-data.frame(sub1Summ$parameters)
(np		<-nrow(pTable))
(df		<-20-np)

# Work out p-value
#  Note: pchisq(q,df) is a distribution function in R
(pvalue	<-pchisq(chisquare,df,lower.tail=FALSE))



# -------------------------------------------------------------------------------------------------------------------------------------
# Sub2 model: delta put to extremely high value, Extreme Multiformity of second disorder only
# --------------------------------------------------------------------------------------------------------------------------------------


sub2Model	<- mxModel(ExtremeMultiformityFit, name="sub2")
sub2Model	<- omxSetParameters(sub2Model, labels="deltathr2f1", free=F, values=6)
sub2Fit	<- mxRun(sub2Model,intervals=T)
(sub2Summ	<- summary(sub2Fit))

# -------------------------------------------------------------------------------------------------------------------------------------

# ******************************************************
# Get Chi Square
(chisquare	<-mxEval(objective,sub2Fit))
omxCheckCloseEnough(chisquare, 37.3105, 1e-2)

# Work out degrees of freedom
pTable	<-data.frame(sub2Summ$parameters)
(np		<-nrow(pTable))
(df		<-20-np)

# Work out p-value
#  Note: pchisq(q,df) is a distribution function in R
(pvalue	<-pchisq(chisquare,df,lower.tail=FALSE))
omxCheckCloseEnough(log(pvalue), -9.188, 1e-2)


# -------------------------------------------------------------------------------------------------------------------------------------
# Test that math is correct by checking whether probabilties add up to 1
# --------------------------------------------------------------------------------------------------------------------------------------


oneTableDZ <- data.frame(ExtremeMultiformityFit$output$algebras$DZ.DZExpectedProb)
oneTableMZ <- data.frame(ExtremeMultiformityFit$output$algebras$MZ.MZExpectedProb)

(sumDZprob <- colSums (oneTableDZ, na.rm = FALSE, dims = 1))
(sumMZprob <- colSums (oneTableMZ, na.rm = FALSE, dims = 1))

omxCheckCloseEnough(sumDZprob, 1, 1e-5)
omxCheckCloseEnough(sumMZprob, 1, 1e-5)