1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
#
# Copyright 2007-2021 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------
require(OpenMx)
data(twinData)
Vars <- 'bmi'
nv <- 1 # number of variables
ntv <- nv*2 # number of total variables
selVars <- paste(Vars,c(rep(1,nv),rep(2,nv)),sep="") #c('bmi1','bmi2')
# Select Data for Analysis
selData <- subset(twinData, twinData$zyg %in% c(1,3))
selData$mzdef <- as.numeric(selData$zyg==1)
selData$dzdef <- as.numeric(selData$zyg==3)
selData <- selData[,c(selVars,"mzdef","dzdef")]
mzData <- subset(twinData, zyg==1, selVars)
dzData <- subset(twinData, zyg==3, selVars)
# Generate Descriptive Statistics
colMeans(mzData,na.rm=TRUE)
colMeans(dzData,na.rm=TRUE)
cov(mzData,use="complete")
cov(dzData,use="complete")
# Set Starting Values
svMe <- 20 # start value for means
svPa <- .5 # start value for path coefficients (sqrt(variance/#ofpaths))
# ACE Model
# Matrices declared to store a, d, and e Path Coefficients
pathA <- mxMatrix( type="Full", nrow=nv, ncol=nv,
free=TRUE, values=svPa, label="a11", name="a" )
pathC <- mxMatrix( type="Full", nrow=nv, ncol=nv,
free=TRUE, values=svPa, label="c11", name="c" )
pathE <- mxMatrix( type="Full", nrow=nv, ncol=nv,
free=TRUE, values=svPa, label="e11", name="e" )
# Matrices generated to hold A, C, and E computed Variance Components
covA <- mxAlgebra( expression=a %*% t(a), name="A" )
covC <- mxAlgebra( expression=c %*% t(c), name="C" )
covE <- mxAlgebra( expression=e %*% t(e), name="E" )
# Algebra to compute total variances
covP <- mxAlgebra( expression=A+C+E, name="V" )
# Use a different mean for MZ and DZ to test imxRowGradients() correctly handling different parameter labels in different submodels:
meanMZ <- mxMatrix( type="Full", nrow=1, ncol=ntv,
free=TRUE, values=svMe, label="mzmean", name="MZmean" )
meanDZ <- mxMatrix( type="Full", nrow=1, ncol=ntv,
free=TRUE, values=svMe, label="dzmean", name="DZmean" )
covMZ <- mxAlgebra( expression=rbind( cbind(V, A+C),
cbind(A+C, V)), name="expCovMZ" )
covDZ <- mxAlgebra( expression=rbind( cbind(V, 0.5%x%A+C),
cbind(0.5%x%A+C , V)), name="expCovDZ" )
# Data objects for Multiple Groups
dataMZ <- mxData( observed=mzData, type="raw" )
dataDZ <- mxData( observed=dzData, type="raw" )
# Objective objects for Multiple Groups
expMZ <- mxExpectationNormal( covariance="expCovMZ", means="MZmean",
dimnames=selVars )
expDZ <- mxExpectationNormal( covariance="expCovDZ", means="DZmean",
dimnames=selVars )
funML <- mxFitFunctionML()
# Combine Groups
pars <- list( pathA, pathC, pathE, covA, covC, covE, covP )
modelMZ <- mxModel( pars, meanMZ, covMZ, dataMZ, expMZ, funML, name="MZ" )
modelDZ <- mxModel( pars, meanDZ, covDZ, dataDZ, expDZ, funML, name="DZ" )
fitML <- mxFitFunctionMultigroup(c("MZ","DZ") )
twinACEModel <- mxModel( "ACE", pars, modelMZ, modelDZ, fitML )
twinACEFit <- mxRun(twinACEModel)
summary(twinACEFit)
multigroupRSE <- imxRobustSE(twinACEFit, details=TRUE)
#Single-group twin model:
singlegroup <- mxModel(
"SingleGroupTwinModel",
mxData(selData,type="raw"),
pars, meanMZ, meanDZ,
mxMatrix(type="Full",nrow=1,ncol=1,labels=c("data.mzdef"),name="MZdef"),
mxMatrix(type="Full",nrow=1,ncol=1,labels=c("data.dzdef"),name="DZdef"),
mxAlgebra(MZdef%x%MZmean + DZdef%x%DZmean, name="Mu"),
mxAlgebra(MZdef + DZdef*0.5, name="kinship"),
mxAlgebra(rbind(cbind(V, kinship%x%A+C),
cbind(kinship%x%A+C , V)), name="Sigma"),
mxExpectationNormal(covariance="Sigma",means="Mu",dimnames=selVars),
mxFitFunctionML()
)
singlegroupFit <- mxRun(singlegroup)
singlegroupRSE <- imxRobustSE(singlegroupFit,TRUE)
omxCheckCloseEnough(singlegroupRSE[[1]], multigroupRSE[[1]], 1e-5)
omxCheckCloseEnough(singlegroupRSE[[2]], multigroupRSE[[2]], 1e-6)
omxCheckCloseEnough(singlegroupRSE[[3]], multigroupRSE[[3]], 1e-5)
omxCheckCloseEnough(singlegroupRSE[[4]], multigroupRSE[[4]], 5e-3)
omxCheckCloseEnough(singlegroupRSE[[5]], multigroupRSE[[5]], 1e-4)
#Check for existence and dimnames of output:
pn <- c("a11","c11","e11","mzmean","dzmean")
omxCheckTrue(length(multigroupRSE$SE))
omxCheckEquals(names(multigroupRSE$SE),pn)
omxCheckTrue(length(multigroupRSE$cov))
omxCheckEquals(rownames(multigroupRSE$cov),pn)
omxCheckEquals(colnames(multigroupRSE$cov),pn)
omxCheckTrue(length(multigroupRSE$bread))
omxCheckEquals(rownames(multigroupRSE$bread),pn)
omxCheckEquals(colnames(multigroupRSE$bread),pn)
omxCheckTrue(length(multigroupRSE$meat))
omxCheckEquals(rownames(multigroupRSE$meat),pn)
omxCheckEquals(colnames(multigroupRSE$meat),pn)
omxCheckTrue(length(multigroupRSE$TIC))
omxCheckTrue(length(singlegroupRSE$SE))
omxCheckEquals(names(singlegroupRSE$SE),pn)
omxCheckTrue(length(singlegroupRSE$cov))
omxCheckEquals(rownames(singlegroupRSE$cov),pn)
omxCheckEquals(colnames(singlegroupRSE$cov),pn)
omxCheckTrue(length(singlegroupRSE$bread))
omxCheckEquals(rownames(singlegroupRSE$bread),pn)
omxCheckEquals(colnames(singlegroupRSE$bread),pn)
omxCheckTrue(length(singlegroupRSE$meat))
omxCheckEquals(rownames(singlegroupRSE$meat),pn)
omxCheckEquals(colnames(singlegroupRSE$meat),pn)
omxCheckTrue(length(singlegroupRSE$TIC))
#Multigroup twin model, with a dependency group:
covMZ <- mxAlgebra( expression=rbind( cbind(U.V, A+C),
cbind(A+C, U.V)), name="expCovMZ" )
covDZ <- mxAlgebra( expression=rbind( cbind(U.V, 0.5%x%A+C),
cbind(0.5%x%A+C , U.V)), name="expCovDZ" )
pars <- list( pathA, pathC, pathE, covA, covC, covE )
modelU <- mxModel("U",covP,pars)
modelMZ <- mxModel( pars, meanMZ, covMZ, dataMZ, expMZ, funML, name="MZ" )
modelDZ <- mxModel( pars, meanDZ, covDZ, dataDZ, expDZ, funML, name="DZ" )
fitML <- mxFitFunctionMultigroup(c("MZ","DZ") )
twinACEModel <- mxModel( "ACE", pars, modelMZ, modelDZ, modelU, fitML )
twinACEFit <- mxRun(twinACEModel)
multigroupRSE2 <- imxRobustSE(twinACEFit,T,"U")
omxCheckCloseEnough(multigroupRSE[[1]], multigroupRSE2[[1]], 1e-5)
omxCheckCloseEnough(multigroupRSE[[2]], multigroupRSE2[[2]], 1e-6)
omxCheckCloseEnough(multigroupRSE[[3]], multigroupRSE2[[3]], 1e-5)
omxCheckCloseEnough(multigroupRSE[[4]], multigroupRSE2[[4]], 5e-3)
omxCheckCloseEnough(multigroupRSE[[5]], multigroupRSE2[[5]], 1e-4)
omxCheckTrue(length(multigroupRSE2$SE))
omxCheckEquals(names(multigroupRSE2$SE),pn)
omxCheckTrue(length(multigroupRSE2$cov))
omxCheckEquals(rownames(multigroupRSE2$cov),pn)
omxCheckEquals(colnames(multigroupRSE2$cov),pn)
omxCheckTrue(length(multigroupRSE2$bread))
omxCheckEquals(rownames(multigroupRSE2$bread),pn)
omxCheckEquals(colnames(multigroupRSE2$bread),pn)
omxCheckTrue(length(multigroupRSE2$meat))
omxCheckEquals(rownames(multigroupRSE2$meat),pn)
omxCheckEquals(colnames(multigroupRSE2$meat),pn)
omxCheckTrue(length(multigroupRSE2$TIC))
|