1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
#
# Copyright 2007-2020 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------------
# Program: OneFactorOrdinal_MatrixRaw.R
# Author: Michael Neale
# Date: 2010.08.14
#
# ModelType: Factor
# DataType: Ordinal
# Field: None
#
# Purpose:
# One Factor model to estimate factor loadings,
# residual variances and means
# Matrix style model input - Raw data input - Ordinal data
#
# RevisionHistory:
# Hermine Maes -- 2010.09.07 updated & reformatted
# Ross Gore -- 2011.06.06 added Model, Data & Field metadata
# -----------------------------------------------------------------------------
require(OpenMx)
#mxOption(key="Parallel diagnostics", value = "Yes")
# Load libraries
# -----------------------------------------------------------------------------
nVariables<-5
nFactors<-1
nThresholds<-3
nSubjects<-500
isIdentified<-function(nVariables,nFactors) as.logical(1+sign((nVariables*(nVariables-1)/2) - nVariables*nFactors + nFactors*(nFactors-1)/2))
isIdentified(nVariables,nFactors) # if this function returns FALSE then model is not identified, otherwise it is.
# Set up simulation parameters:
# nVariables>=3, nThresholds>=1,
# nSubjects>=nVariables*nThresholds
# and model should be identified
# -------------------------------------
loadings <- matrix(.7,nrow=nVariables,ncol=nFactors)
residuals <- 1 - (loadings * loadings)
sigma <- loadings %*% t(loadings) + vec2diag(residuals)
mu <- matrix(0,nrow=nVariables,ncol=1)
set.seed(1234)
continuousData <- mvtnorm::rmvnorm(n=nSubjects,mu,sigma)
# Simulate multivariate normal data
# -------------------------------------
quants<-quantile(continuousData[,1], probs = c((1:nThresholds)/(nThresholds+1)))
ordinalData<-matrix(0,nrow=nSubjects,ncol=nVariables)
for(i in 1:nVariables)
{
ordinalData[,i] <- cut(as.vector(continuousData[,i]),c(-Inf,quants,Inf))
}
# Chop continuous variables into
# ordinal data with nThresholds+1
# approximately equal categories,
# based on 1st variable
# -------------------------------------
ordinalData <- mxFactor(as.data.frame(ordinalData),levels=c(1:(nThresholds+1)))
# Make the ordinal variables into
# R factors
# -------------------------------------
fruitynames<-paste("banana",1:nVariables,sep="")
names(ordinalData)<-fruitynames
# Name the variables
# -------------------------------------
# Simulate Data
# -----------------------------------------------------------------------------
oneFactorThresholdModel <- mxModel("oneFactorThresholdModel",
mxMatrix(
type="Full",
nrow=nVariables,
ncol=nFactors,
free=TRUE,
values=0.2,
lbound=-.99,
ubound=.99,
name="facLoadings"
),
mxMatrix(
type="Unit",
nrow=nVariables,
ncol=1,
name="vectorofOnes"
),
mxAlgebra(
expression=vectorofOnes - (diag2vec(facLoadings %*% t(facLoadings))) ,
name="resVariances"
),
mxAlgebra(
expression=facLoadings %*% t(facLoadings) + vec2diag(resVariances),
name="expCovariances"
),
mxMatrix(
type="Zero",
nrow=1,
ncol=nVariables,
name="expMeans"
),
mxMatrix(
type="Full",
nrow=nThresholds,
ncol=nVariables,
free=TRUE,
values=.2,
lbound=rep( c(-Inf,rep(.01,(nThresholds-1))) , nVariables),
dimnames=list(c(), fruitynames),
name="thresholdDeviations"
),
mxMatrix(
type="Lower",
nrow=nThresholds,
ncol=nThresholds,
free=FALSE,
values=1,
name="unitLower"
),
mxAlgebra(
expression=unitLower %*% thresholdDeviations,
name="expThresholds"
),
mxData(
observed=ordinalData,
type='raw'
),
mxFitFunctionML(),mxExpectationNormal(
covariance="expCovariances",
means="expMeans",
dimnames=fruitynames,
thresholds="expThresholds"
)
)
# Create Factor Model with Raw Ordinal Data and Matrices Input
# -----------------------------------------------------------------------------
oneFactorThresholdFit <- mxRun(oneFactorThresholdModel, suppressWarnings=TRUE)
# Fit the model with mxRun
# -----------------------------------------------------------------------------
summary(oneFactorThresholdFit)
# Print a summary of the results
# -----------------------------------------------------------------------------
omxCheckCloseEnough(oneFactorThresholdFit$output$fit, 6281.996, .1)
|