File: OneFactorOrdinal_MatrixRaw.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (165 lines) | stat: -rw-r--r-- 5,124 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#
#   Copyright 2007-2020 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

# -----------------------------------------------------------------------------
# Program: OneFactorOrdinal_MatrixRaw.R
# Author: Michael Neale
# Date: 2010.08.14
#
# ModelType: Factor
# DataType: Ordinal
# Field: None
#
# Purpose:
#      One Factor model to estimate factor loadings,
#      residual variances and means
#      Matrix style model input - Raw data input - Ordinal data
#
# RevisionHistory:
#      Hermine Maes -- 2010.09.07 updated & reformatted
#      Ross Gore -- 2011.06.06	added Model, Data & Field metadata
# -----------------------------------------------------------------------------

require(OpenMx)

#mxOption(key="Parallel diagnostics", value = "Yes")

# Load libraries
# -----------------------------------------------------------------------------

nVariables<-5
nFactors<-1
nThresholds<-3
nSubjects<-500
isIdentified<-function(nVariables,nFactors) as.logical(1+sign((nVariables*(nVariables-1)/2) -  nVariables*nFactors + nFactors*(nFactors-1)/2))

isIdentified(nVariables,nFactors) # if this function returns FALSE then model is not identified, otherwise it is.
# Set up simulation parameters:
# nVariables>=3, nThresholds>=1,
# nSubjects>=nVariables*nThresholds
# and model should be identified
# -------------------------------------

loadings <- matrix(.7,nrow=nVariables,ncol=nFactors)
residuals <- 1 - (loadings * loadings)
sigma <- loadings %*% t(loadings) + vec2diag(residuals)
mu <- matrix(0,nrow=nVariables,ncol=1)

set.seed(1234)
continuousData <- mvtnorm::rmvnorm(n=nSubjects,mu,sigma)
# Simulate multivariate normal data
# -------------------------------------

quants<-quantile(continuousData[,1],  probs = c((1:nThresholds)/(nThresholds+1)))
ordinalData<-matrix(0,nrow=nSubjects,ncol=nVariables)
for(i in 1:nVariables)
{
ordinalData[,i] <- cut(as.vector(continuousData[,i]),c(-Inf,quants,Inf))
}
# Chop continuous variables into
# ordinal data with nThresholds+1
# approximately equal categories,
# based on 1st variable
# -------------------------------------

ordinalData <- mxFactor(as.data.frame(ordinalData),levels=c(1:(nThresholds+1)))
# Make the ordinal variables into
# R factors
# -------------------------------------

fruitynames<-paste("banana",1:nVariables,sep="")
names(ordinalData)<-fruitynames
# Name the variables
# -------------------------------------

# Simulate Data
# -----------------------------------------------------------------------------

oneFactorThresholdModel <- mxModel("oneFactorThresholdModel",
    mxMatrix(
        type="Full",
        nrow=nVariables,
        ncol=nFactors,
        free=TRUE,
        values=0.2,
        lbound=-.99,
        ubound=.99,
        name="facLoadings"
    ),
    mxMatrix(
        type="Unit",
        nrow=nVariables,
        ncol=1,
        name="vectorofOnes"
    ),
    mxAlgebra(
        expression=vectorofOnes - (diag2vec(facLoadings %*% t(facLoadings))) ,
        name="resVariances"
    ),
    mxAlgebra(
        expression=facLoadings %*% t(facLoadings) + vec2diag(resVariances),
        name="expCovariances"
    ),
    mxMatrix(
        type="Zero",
        nrow=1,
        ncol=nVariables,
        name="expMeans"
    ),
    mxMatrix(
        type="Full",
        nrow=nThresholds,
        ncol=nVariables,
        free=TRUE,
        values=.2,
        lbound=rep( c(-Inf,rep(.01,(nThresholds-1))) , nVariables),
        dimnames=list(c(), fruitynames),
        name="thresholdDeviations"
    ),
    mxMatrix(
        type="Lower",
        nrow=nThresholds,
        ncol=nThresholds,
        free=FALSE,
        values=1,
        name="unitLower"
    ),
    mxAlgebra(
        expression=unitLower %*% thresholdDeviations,
        name="expThresholds"
    ),
    mxData(
        observed=ordinalData,
        type='raw'
    ),
    mxFitFunctionML(),mxExpectationNormal(
        covariance="expCovariances",
        means="expMeans",
        dimnames=fruitynames,
        thresholds="expThresholds"
    )
)
# Create Factor Model with Raw Ordinal Data and Matrices Input
# -----------------------------------------------------------------------------

oneFactorThresholdFit <- mxRun(oneFactorThresholdModel, suppressWarnings=TRUE)
# Fit the model with mxRun
# -----------------------------------------------------------------------------

summary(oneFactorThresholdFit)
# Print a summary of the results
# -----------------------------------------------------------------------------

omxCheckCloseEnough(oneFactorThresholdFit$output$fit, 6281.996, .1)