File: StateSpaceLatentGrowth.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (161 lines) | stat: -rw-r--r-- 5,116 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#------------------------------------------------------------------------------
# Load required packages

require(OpenMx)

#------------------------------------------------------------------------------
# Read-in and list-ify data

data(myLongitudinalData)
matplot(t(myLongitudinalData), type='l')
dataL <- list()
for(i in 1:nrow(myLongitudinalData)){
	obsI <- unlist(myLongitudinalData[i,])
	dataL[[i]] <- data.frame(y=obsI, ID=i, time=0:4)
}
nSubj <- length(dataL)


# require(EasyMx)
# gmod <- emxGrowthModel(1, data=myLongitudinalData, use=paste0('x', 1:5), times=0:4, run=TRUE)
# faml <- mxFactorScores(gmod)
# fare <- mxFactorScores(gmod, 'regression')


#------------------------------------------------------------------------------
# Create state space matrices for latent growth

amat <- mxMatrix("Iden", 2, 2, name="A")
bmat <- mxMatrix("Zero", 2, 1, name="B")
clab <- c(NA, "data.time")
cdim <- list(c("y"), c("I", "S"))
cmat <- mxMatrix("Full", 1, 2, FALSE, c(1, NA), name="C",
    dimnames=cdim, labels=clab)
dmat <- mxMatrix("Zero", 1, 1, name="D")
qmat <- mxMatrix("Zero", 2, 2, name="Q")
rlab <- "resid"
rmat <- mxMatrix("Diag", 1, 1, TRUE, .2, name="R", labels=rlab)
xlab <- c("meanI", "meanS")
xmat <- mxMatrix("Full", 2, 1, TRUE, c(1, 1), name="x0", labels=xlab)
pval <- c(1, .5, 1)
plab <- c("varI", "covIS", "varS")
pmat <- mxMatrix("Symm", 2, 2, TRUE, pval, name="P0", plab, lbound=c(0, NA, 0))
umat <- mxMatrix("Zero", 1, 1, name="u")

modL <- list(amat, bmat, cmat, dmat, qmat, rmat, xmat,
	pmat, umat)
modNames <- paste0("Subject", 1:nSubj, "LatentGrowth")
expSS <- mxExpectationStateSpace(A="A", B="B", C="C", D="D",
	Q="Q", R="R", x0="x0", P0="P0", u="u")

#------------------------------------------------------------------------------
# Create/estimate multisubject model

indivmodels <- list()
for(k in 1:nSubj){
	DataSetForSubjectK <- dataL[[k]]
	indivmodels[[k]] <- mxModel(name=modNames[k],
		modL, expSS,
		mxFitFunctionML(),
		mxData(DataSetForSubjectK, type='raw')) 
}
multiSubjGrowth <- mxModel(name="MultiGrowth", indivmodels,
	mxFitFunctionMultigroup(modNames))

multiSubjGrowthRun <- mxRun(multiSubjGrowth)


#------------------------------------------------------------------------------
# Examine results

summary(multiSubjGrowthRun)

# Kalman Scores for Subject 1
ks <- mxKalmanScores(multiSubjGrowthRun$Subject1LatentGrowth, frontend=FALSE)
ksf <- mxKalmanScores(multiSubjGrowthRun$Subject1LatentGrowth, frontend=TRUE)

# Check that all frontend and backend components are the same
compDiff <- 0
for(comp in names(ksf)){
	compDiff <- compDiff + sum((ks[[comp]] - ksf[[comp]])^2)
}
omxCheckCloseEnough(compDiff, 0, 1e-10)


# These are equal to the empirical Bayes random effects estimates
#  from the nlme and lme4 packages
ks$xSmoothed


ksAll <- matrix(0, nrow=length(multiSubjGrowthRun$submodels), ncol=2)
for(i in 1:length(multiSubjGrowthRun$submodels)){
	ksAll[i,] <- mxKalmanScores(multiSubjGrowthRun$submodels[[i]], frontend=FALSE)$xSmoothed[1,]
}

# TODO Bug fix: when frontend=FALSE the results are different
#  and incorrect


#------------------------------------------------------------------------------
# Run the linear mixed effects model for comparison

require(lme4)
tallData <- do.call(rbind, dataL)
g <- lmer(y ~ 1 + time + (1 + time | ID), data=tallData)

gfix <- fixef(g)
gcov <- as.data.frame(VarCorr(g))$vcov
cmp <- cbind(StateSpace=coef(multiSubjGrowthRun), mixed=c(gcov[4], gfix, gcov[c(1,3,2)]))

omxCheckCloseEnough(cmp[,1], cmp[,2], 0.015)

omxCheckCloseEnough(ksAll, t(t(ranef(g)$ID) + fixef(g)), 0.01)


#------------------------------------------------------------------------------
# Create definition variable test variation with a person-level covariate
#  predicting the random means

set.seed(99)
z <- ksAll[,1] + rnorm(nrow(ksAll), mean=3.3, sd=1.8)
# implies that i = 3.3 + .5*u
lmc <- lm(ksAll[,1] ~ z)

zmat <- mxMatrix(name='Z', type='Full', nrow=2, ncol=1, labels=c(NA, 'data.z'), values=c(1, NA), free=FALSE)
emat <- mxMatrix(name='E', type='Full', nrow=2, ncol=2, labels=c('b0I', 'b0S', 'b1I', 'b1S'), values=0, free=TRUE)
xmat <- mxAlgebra( E %*% Z, name='x0')
modL <- list(amat, bmat, cmat, dmat, qmat, rmat, xmat,
	pmat, umat, zmat, emat)

# Create/Run model
indivmodels <- list()
for(k in 1:nSubj){
	dataL[[k]]$z <- z[k]
	DataSetForSubjectK <- dataL[[k]]
	indivmodels[[k]] <- mxModel(name=modNames[k],
		modL, expSS,
		mxFitFunctionML(),
		mxData(DataSetForSubjectK, type='raw')) 
}
multiSubjGrowthDef <- mxModel(name="MultiGrowthDef", indivmodels,
	mxFitFunctionMultigroup(modNames))

multiSubjGrowthDefRun <- mxRun(multiSubjGrowthDef)

# Inspect parameters
summary(multiSubjGrowthDefRun)

# Compare to linear mixed effects
require(lme4)
tallData <- do.call(rbind, dataL)
gd <- lmer(y ~ 1 + time*z + (1 + time | ID), data=tallData)

gdfix <- fixef(gd)
gdcov <- as.data.frame(VarCorr(gd))$vcov
cmpd <- cbind(StateSpace=coef(multiSubjGrowthDefRun), mixed=c(gdcov[c(4, 1, 3, 2)], gdfix))

omxCheckCloseEnough(cmpd[,1], cmpd[,2], 0.015)


#------------------------------------------------------------------------------
# Done