File: brooke.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (199 lines) | stat: -rw-r--r-- 9,448 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Test result of algebras that depend on definition variables
# after mxRun. Contributed by Gregory Carey.

# full text for "Sat.fitFuntion not finite" is
# Error: The job for model 'Sat' exited abnormally with the error message: MxComputeGradientDescent: fitfunction Sat.fitfunction is not finite ()
# In addition: Warning message:
#   In model 'Sat' Optimizer returned a non-zero status code 10. Starting values are not feasible. Consider mxTryHard() 
#set.seed(101276) # gives "Sat.fitFunction not finite" works w mod 1
#set.seed(50074)  # gives "Sat.fitFunction not finite" does not work w mod1
set.seed(120450) # gives "Sat.fitFunction not finite" This works w mod1
#set.seed(270156) # gives "Sat.fitFunction not finite"
h1sq <- .62
h2sq <- .47
rg <- .55
re <- .34
covG <- sqrt(h1sq)*sqrt(h2sq)*rg
rp <- covG + sqrt((1 - h1sq)*(1 - h2sq))*re
pmat <- matrix(c(1, rp, rp, 1), 2, 2)
gmat <- matrix(c(h1sq, covG, covG, h2sq), 2, 2)
SigmaMZ <- rbind(cbind(pmat, gmat),
                 cbind(gmat, pmat))
SigmaDZ <- rbind(cbind(pmat, .5*gmat),
                 cbind(.5*gmat, pmat))
thresh <- c(.3, .5, .3, .5)
N <- 250



fcn <- function(N, Sigma, thresh) {
  age <- round(25 + 5*rnorm(N))
  X <- mvtnorm::rmvnorm(N, rep(0, ncol(Sigma)), Sigma)
  for (i in 1:4) {
    one <- which(X[,i] > thresh[i])
    zero <- which(X[,i] <= thresh[i])
    X[one,i] <- 1
    X[zero,i] <- 0
  }
  return(cbind(X, age, age))
}

temp <- fcn(N, SigmaMZ, thresh)
df <- cbind(rep(1, N), temp)
temp <- fcn(N, SigmaMZ, thresh)
temp <- cbind(rep(2, N), temp)
df <- rbind(df, temp)
temp <- fcn(N, SigmaDZ, thresh)
temp <- cbind(rep(3, N), temp)
df <- rbind(df, temp)
temp <- fcn(N, SigmaDZ, thresh)
temp <- cbind(rep(4, N), temp)
df <- rbind(df, temp)
colnames(df) <- c("zyg", "mj1", "nssi1", "mj2",
                  "nssi2", "age1", "age2")
mj_nssi <- data.frame(df, stringsAsFactors=F)        

require(OpenMx)

# --- this from Brooke's post 
#     http://openmx.ssri.psu.edu/thread/3996
#     note that start values have been changed to
#     reflect the parameters for the simulated data

#Make Factors
mj_nssi$mj1 <-mxFactor(mj_nssi$mj1, levels=c(0:1), exclude = NA)
mj_nssi$mj2  <-mxFactor(mj_nssi$mj2, levels=c(0:1), exclude = NA)
mj_nssi$nssi1 <-mxFactor(mj_nssi$nssi1, levels=c(0:1), exclude = NA)
mj_nssi$nssi2  <-mxFactor(mj_nssi$nssi2, levels=c(0:1), exclude = NA)

#Selects Vars for Analysis
vars <-c('nssi','mj')
selVars	<-c('nssi1', 'mj1', 'nssi2', 'mj2' )
useVars	<-c('nssi1', 'mj1', 'nssi2', 'mj2', 'age1', 'age2')

# Select Data for Analysis
mzfData <- subset(mj_nssi, zyg==1, useVars)
mzmData <- subset(mj_nssi, zyg==2, useVars)
dzfData <- subset(mj_nssi, zyg==3, useVars)
dzmData <- subset(mj_nssi, zyg==4, useVars)

nv <- 2	# number of variables per twin
ntv <- nv*2	# number of variables per pair
nth	<- 1	# number of max thresholds

# 1) Fits a constrained Polychoric correlation model
# TH same across twins but different across zyg groups
# Age effect is different across variables, but same across thresholds within variables (if c>2) ###?
# There is one overall rPH between var1-2 and the x-trait x-twin correlations are symmetric
# ------------------------------------------------------------------------------------------------------------------------------

# CREATE LABELS & START VALUES as objects(to ease specification)
LabThMZf <-c('Tmz_11f','imz_11f')	# THs for var 1 and 2 for a twin individual (mz)
LabThMZm <-c('Tmz_11m','imz_11m')
LabCorMZf	<-c('r21f','rMZ1f','MZxtxtf','MZxtxtf','rMZ2f','r21f') #labels for correlation matrix
LabCorMZm <-c('r21m','rMZ1m','MZxtxtm','MZxtxtm','rMZ2m','r21m')

LabThDZf	<-c('Tdz_11f','idz_11f')
LabThDZm <-c('Tdz_11m','idz_11m')
LabCorDZf	<-c('r21f','rDZ1f','DZxtxtf','DZxtxtf','rDZ2f','r21f')
LabCorDZm <-c('r21m','rDZ1m','DZxtxtm','DZxtxtm','rDZ2m','r21m')

LabCovf	<-c('Thnnsif', 'BageThnnsif', 'BageThmjf', 'BageThmjf')
LabCovm <-c('BageThnnsim', 'BageThnnsim', 'BageTmjm', 'BageTmjm')

ThPat <-c(T,T)

# StCorMZf	<-c(.1, .6, .2, .2, .6, .1)
# StCorMZm <-c(.1, .6, .2, .2, .6, .1)
# StCorDZf	<-c(.1, .2, .1, .1, .2, .1)
# StCorDZm <-c(.1, .2, .1, .1, .2, .1)
StCorMZf  <-c(rp, h1sq, covG, covG, h2sq, rp)
StCorMZm <-c(rp, h1sq, covG, covG, h2sq, rp)
StCorDZf	<-c(rp, .5*h1sq, .5*covG, .5*covG, .5*h2sq, rp)
StCorDZm <-c(rp, .5*h1sq, .5*covG, .5*covG, .5*h2sq, rp)

#StTH	<-c(1.2816, 0.9741)
StTH <- thresh[1:2]

# Define definition variables to hold the Covariates
obsAge1  <- mxMatrix( type="Full", nrow=1, ncol=1, free=F, labels=c("data.age1"), name="Age1")
obsAge2	<- mxMatrix( type="Full", nrow=1, ncol=1, free=F, labels=c("data.age2"), name="Age2")

# Matrix & Algebra for expected means (SND), Thresholds, effect of Age on Th and correlations
Mean	<-mxMatrix( type="Zero", nrow=1, ncol=ntv, name="M" )

betaAf	<-mxMatrix( type="Full", nrow=nth, ncol=nv, free=T, values=.2, labels=LabCovf, name="BageTHf" )
#betaAm <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=T, values=.2, labels=LabCovm, name="BageTHm" )
betaAm <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=T, values=.2, labels=c("Thnnsim", "BageThnnsim"), name="BageTHm" )

inc <-mxMatrix( type="Lower",nrow=nth, ncol=nth, free=F, values=1, name="Low")

Tmzf	<-mxMatrix( type="Full", nrow=nth, ncol=nv, free=ThPat, values=StTH, lbound= -3, ubound=3, labels=LabThMZf, name="ThMZf")
Tmzm <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=ThPat, values=StTH, lbound= -3, ubound=3, labels=LabThMZm, name="ThMZm") #BMH now give only one lower limit
ThresMZf	<-mxAlgebra( expression= cbind(Low%*%ThMZf + BageTHf%x%Age1, Low%*%ThMZf + BageTHf%x%Age2), name="expThresMZf")
ThresMZm <-mxAlgebra( expression= cbind(Low%*%ThMZm + BageTHm%x%Age1, Low%*%ThMZm + BageTHm%x%Age2), name="expThresMZm")
CorMZf	<-mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=T, values=StCorMZf, labels=LabCorMZf, lbound=-.99, ubound=.99, name="expCorMZf")
CorMZm <-mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=T, values=StCorMZm, labels=LabCorMZm, lbound=-.99, ubound=.99, name="expCorMZm")

Tdzf	<-mxMatrix( type="Full", nrow=nth, ncol=nv, free=ThPat, values=StTH, lbound= -3, ubound=3, labels=LabThDZf, name="ThDZf") #BMH now give only one lower limit
Tdzm <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=ThPat, values=StTH, lbound= -3, ubound=3, labels=LabThDZm, name="ThDZm")
ThresDZf	<-mxAlgebra( expression= cbind(Low%*%ThDZf + BageTHf%x%Age1, Low%*%ThDZf + BageTHf%x%Age2), name="expThresDZf")
ThresDZm <-mxAlgebra( expression= cbind(Low%*%ThDZm + BageTHm%x%Age1, Low%*%ThDZm + BageTHm%x%Age2), name="expThresDZm")
CorDZf	<-mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=T, values=StCorDZf, labels=LabCorDZf, lbound=-.99, ubound=.99, name="expCorDZf")
CorDZm <-mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=T, values=StCorDZm, labels=LabCorDZm, lbound=-.99, ubound=.99, name="expCorDZm")

# Data objects for Multiple Groups
dataMZf <- mxData( observed=mzfData, type="raw" )
dataMZm <- mxData( observed=mzmData, type="raw" )
dataDZf <- mxData( observed=dzfData, type="raw" )
dataDZm <- mxData( observed=dzmData, type="raw" )

expMZf <- mxExpectationNormal( covariance="expCorMZf", means="M", dimnames=selVars, thresholds="expThresMZf" )
expMZm <- mxExpectationNormal( covariance="expCorMZm", means="M", dimnames=selVars, thresholds="expThresMZm" )
expDZf <- mxExpectationNormal( covariance="expCorDZf", means="M", dimnames=selVars, thresholds="expThresDZf" )
expDZm <- mxExpectationNormal( covariance="expCorDZm", means="M", dimnames=selVars, thresholds="expThresDZm" )

#FitFunctions
fun <- mxFitFunctionML()
fitFunction <- mxFitFunctionMultigroup(c("MZf", "MZm", "DZf", "DZm"))

# Combine Groups
modelMZf	<- mxModel( obsAge1, obsAge2, Mean, betaAf, Tmzf, inc, ThresMZf, CorMZf, dataMZf, expMZf, fun, name="MZf" )
modelMZm <- mxModel( obsAge1, obsAge2, Mean, betaAm, Tmzm, inc, ThresMZm, CorMZm, dataMZm, expMZm, fun, name="MZm" )
modelDZf	<- mxModel( obsAge1, obsAge2, Mean, betaAf, Tdzf, inc, ThresDZf, CorDZf, dataDZf, expDZf, fun, name="DZf" )
modelDZm <- mxModel( obsAge1, obsAge2, Mean, betaAm, Tdzm, inc, ThresDZm, CorDZm, dataDZm, expDZm, fun, name="DZm" )

SatModel <- mxModel( "Sat", modelMZf, modelMZm, modelDZf, modelDZm, fitFunction)

# my code: where the madness starts
SatModel$MZf$Age1
SatModel$MZf$BageTHf
mxEval(MZf.BageTHf %x% MZf.Age1, SatModel, compute=T)
mxEval(matrix(1, 1, 1) %*% MZf.Age1, SatModel, compute=T)

# -------------------------------------------------------------------------------------------------------------------------------
# 1) RUN Saturated Model

SatFit	<- mxRun(SatModel, intervals=F)
summary(SatFit)

# more of my code
mod1 <- mxModel(obsAge1, obsAge2, Mean, betaAf, Tmzf, inc,
                ThresMZf, CorMZf, dataMZf, expMZf, fun,
                name="MZf", mxFitFunctionML())
mod1Res <- mxRun(mod1)

if (mxOption(NULL, "Default optimizer") == 'NPSOL' &&
	    max(abs(c(mod1Res$ThMZf$values) - c(0.779, 0.341))) < .01) {
	# NPSOL can get stuck in a local minimum
	mod1Res <- mxTryHard(mod1Res)
}

# definition variables and dependencies should be set to NA upon return
omxCheckEquals(mod1Res$Age1$values, dataMZf$observed[1,'age1'])
omxCheckEquals(mod1Res$Age2$values, dataMZf$observed[1,'age2'])
omxCheckCloseEnough(c(mod1Res$ThMZf$values), c(0.732, 0.305), .01)
omxCheckCloseEnough(c(mod1Res$BageTHf$values), c(-0.008, 0), .01)
omxCheckEquals(nrow(mod1Res$data$observed), 250)
omxCheckEquals(mod1Res$expThresMZf$result,
               mxEval(expThresMZf, mod1Res, compute=T, defvar.row = 1))