1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
# echo 0 > /proc/self/coredump_filter # normally 023
# R --vanilla --no-save -f models/failing/bock-aitkin-1981.R
# R -d gdb --vanilla --no-save -f models/failing/bock-aitkin-1981.R
#options(error = browser)
require(OpenMx)
require(rpf)
#library(mvtnorm)
options(mxCondenseMatrixSlots=TRUE) #<--For regression testing
set.seed(7)
correct.LL <- 48990.17
numItems <- 30
numPeople <- 500
maxDim <- 2
items <- vector("list", numItems)
correct <- vector("list", numItems)
for (ix in 1:numItems) {
items[[ix]] <- rpf.grm(factors=2)
correct[[ix]] <- rpf.rparam(items[[ix]], version=1)
}
correct.mat <- simplify2array(correct)
correct.mat[1,1:10] <- 0
correct.mat[2,20:30] <- 0
if (0) {
startpar <- sapply(items, rpf.rparam, version=1)
} else {
startpar <- matrix(c(1.4, 1, 0), nrow=3, ncol=numItems)
}
startpar[correct.mat==0] <- 0
maxParam <- max(vapply(items, function(i) rpf.numParam(i), 0))
maxOutcomes <- max(vapply(items, function(i) i$outcomes, 0))
data.g1 <- rpf.sample(numPeople, items, correct.mat)
data.g2 <- rpf.sample(numPeople, items, correct.mat, mean=c(-.5,.8), cov=matrix(c(2,.5,.5,2),nrow=2))
data.g3 <- rpf.sample(numPeople, items, correct.mat, mean=c(-.1,-.8), cov=matrix(c(.9,-.5,-.5,.9),nrow=2))
if (0) {
# for flexMIRT, write CSV
write.table(sapply(data.g1, unclass)-1, file="2d-mg-g1.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
write.table(sapply(data.g2, unclass)-1, file="2d-mg-g2.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
write.table(sapply(data.g3, unclass)-1, file="2d-mg-g3.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
fm <- read.flexmirt("/home/joshua/irt/ifa-2d-mg/2d-mg-prm.txt")
}
mkgroup <- function(model.name, data, latent.free) {
ip.mat <- mxMatrix(name="item", values=startpar, free=TRUE)
colnames(ip.mat) <- colnames(data)
rownames(ip.mat) <- c(paste('f', 1:2, sep=""), 'b')
ip.mat$free[correct.mat==0] <- FALSE
for (ix in 1:numItems) {
for (px in 1:3) {
name <- paste(c('p',ix,',',px), collapse='')
ip.mat$labels[px,ix] <- name
}
}
m.mat <- mxMatrix(name="mean", nrow=1, ncol=2, values=0)
colnames(m.mat) <- paste('f', 1:2, sep="")
cov.mat <- mxMatrix(name="cov", nrow=2, ncol=2, values=diag(2))
dimnames(cov.mat) <- list(paste('f', 1:2, sep=""), paste('f', 1:2, sep=""))
mean <- "mean"
cov <- "cov"
if (latent.free) {
lm <- paste(model.name, "latent", sep="")
mean <- paste(lm, "mean", sep=".")
cov <- paste(lm, "cov", sep=".")
}
m1 <- mxModel(model=model.name,
ip.mat, m.mat, cov.mat,
mxData(observed=data, type="raw"),
mxExpectationBA81(ItemSpec=items, mean=mean, cov=cov,
qpoints=21, qwidth=5, verbose=0L),
mxFitFunctionML())
m1
}
mklatent <- function(name) {
mMat <- mxMatrix(nrow=1, ncol=2, free=T, values=0, name="mean")
colnames(mMat) <- paste('f', 1:2, sep="")
cov <- mxMatrix(type="Symm", nrow=2, ncol=2, free=T, values=diag(2), name="cov")
dimnames(cov) <- list(paste('f', 1:2, sep=""), paste('f', 1:2, sep=""))
mask <- c(FALSE,TRUE,TRUE,FALSE)
cov$labels[mask] <- paste(name, "cov",sep="")
mxModel(paste(name, "latent", sep=""),
mxDataDynamic('cov', expectation=paste(name, "expectation", sep=".")),
mMat, cov,
mxExpectationNormal(covariance="cov", means="mean"),
mxFitFunctionML()
)
}
groups <- paste("g", 1:3, sep="")
latent <- mxModel("latent", mxFitFunctionMultigroup(paste0(groups[-1], "latent")))
g2.latent <- mklatent("g2")
g3.latent <- mklatent("g3")
latent.vargroup <- apply(expand.grid(paste(groups[-1], "latent", sep=""), c('mean','cov')),
1, paste, collapse='.')
latent.plan <- NULL # need a plan for latent distribution parameters
if (0) {
# Copy latent distribution parameters from current estimates without transformation.
latent.plan <- mxComputeSequence(list(mxComputeOnce(paste(groups, 'expectation', sep='.')),
mxComputeOnce(paste(groups, 'expectation', sep='.'),
"latentDistribution", "copy"), # c('mean','covariance')
mxComputeOnce('fitfunction', "set-starting-values")),
freeSet=latent.vargroup)
} else {
# Obtain latent distribution parameters via mxExpectationNormal.
# This permits equality constraints (and potentially more complex latent structure).
latent.plan <- mxComputeGradientDescent(latent.vargroup, fitfunction="latent.fitfunction")
mask <- c(FALSE, TRUE, TRUE, FALSE)
g2.latent$cov$labels[mask] <- 'eq1'
g3.latent$cov$labels[mask] <- 'eq1'
}
g1 <- mkgroup("g1", data.g1, FALSE)
g2 <- mkgroup("g2", data.g2, TRUE)
g3 <- mkgroup("g3", data.g3, TRUE)
grpModel <- mxModel(model="groupModel", g1, g2, g3, g2.latent, g3.latent, latent,
mxFitFunctionMultigroup(paste(groups, "fitfunction", sep=".")),
mxComputeEM(paste(groups, 'expectation', sep='.'), 'scores',
mxComputeSequence(list(
mxComputeNewtonRaphson(paste(groups, 'item', sep=".")),
latent.plan))))
grpModel <- mxRun(grpModel, silent=TRUE)
omxCheckCloseEnough(grpModel$output$minimum, correct.LL, .01)
omxCheckCloseEnough(c(grpModel$submodels$g2latent$mean$values), c(-.516, .708), .01)
omxCheckCloseEnough(c(grpModel$submodels$g2latent$cov$values), c(2.114, -.279,-.279, 2.259), .01)
omxCheckCloseEnough(c(grpModel$submodels$g3latent$mean$values), c(-.027, -.823), .01)
omxCheckCloseEnough(c(grpModel$submodels$g3latent$cov$values), c(.779, -.279, -.279, .738), .01)
emstat <- grpModel$compute$output
if (0) {
# TODO too inconsistent
omxCheckCloseEnough(emstat$totalMstep, 222, 10)
}
grp1 <- as.IFAgroup(grpModel$g1)
|