File: ifa-cai2009.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (203 lines) | stat: -rw-r--r-- 10,166 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# This data is from an email:
#
# Date: Wed, 06 Feb 2013 19:49:24 -0800
# From: Li Cai <lcai at ucla.edu>
# To: Joshua N Pritikin <jpritikin at pobox.com>
# Subject: Re: how did you control item bias in Cai (2010, p. 592) ?

#options(error = browser)
library(OpenMx)
library(rpf)

flexmirt.LL <- 29995.30418

# read data
data.raw <- suppressWarnings(try(read.csv("models/nightly/data/cai2009.csv"), silent=TRUE))
if (is(data.raw, "try-error")) data.raw <- read.csv("data/cai2009.csv")
data.g1 <- as.data.frame(data.raw[data.raw$G==1, 2:13])
data.g2 <- as.data.frame(data.raw[data.raw$G==2, 2:17])

if (0) {
  # for flexmirt
  write.table(data.g1, "cai2009-g1.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
  write.table(data.g2, "cai2009-g2.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)  
  fm <- read.flexmirt("~/irt/cai2009/cai2009-prm.txt")
  fm$G1$spec <- NULL
  fm$G2$spec <- NULL
}

# from flexMIRT
fm <- structure(list(G1 = structure(list(param = structure(c(0.992675,  0.646717, 0, 0, 0.876469, 1.41764, 1.25402, 0, 0, 0.0826927,  1.76547, 1.20309, 0, 0, -0.346706, 2.1951, 0.844399, 0, 0, -0.978301,  1.37774, 0, 1.06694, 0, 0.992373, 1.80365, 0, 0.814109, 0, 0.213559,  2.15718, 0, 1.58086, 0, -0.418129, 1.18201, 0, 1.56533, 0, -1.24173,  1.80474, 0, 0, 1.0774, 0.810718, 2.60754, 0, 0, 1.23507, 0.0598008,  1.01874, 0, 0, 0.724402, -0.294029, 1.68916, 0, 0, 1.37546, -1.13333 ), .Dim = c(5L, 12L), .Dimnames = list(NULL, c("i1", "i2", "i3",  "i4", "i5", "i6", "i7", "i8", "i9", "i10", "i11", "i12"))), mean = structure(c(0.822622,  -0.290462, 0.19672, 0.733993), .Names = c("X6", "X7", "X8", "X9" )), cov = structure(c(0.826046, 0, 0, 0, 0, 1.656, 0, 0, 0, 0,  1.11263, 0, 0, 0, 0, 1.07878), .Dim = c(4L, 4L))), .Names = c("param",  "mean", "cov")),
                     G2 = structure(list(param = structure(c(0.992675,  0.646717, 0, 0, 0, 0.876469, 1.41764, 1.25402, 0, 0, 0, 0.0826927,  1.76547, 1.20309, 0, 0, 0, -0.346706, 2.1951, 0.844399, 0, 0,  0, -0.978301, 1.37774, 0, 1.06694, 0, 0, 0.992373, 1.80365, 0,  0.814109, 0, 0, 0.213559, 2.15718, 0, 1.58086, 0, 0, -0.418129,  1.18201, 0, 1.56533, 0, 0, -1.24173, 1.80474, 0, 0, 1.0774, 0,  0.810718, 2.60754, 0, 0, 1.23507, 0, 0.0598008, 1.01874, 0, 0,  0.724402, 0, -0.294029, 1.68916, 0, 0, 1.37546, 0, -1.13333,  1.75531, 0, 0, 0, 1.20652, 0.875564, 1.26308, 0, 0, 0, 1.25013,  0.196607, 1.44526, 0, 0, 0, 0.990354, -0.351181, 1.89461, 0,  0, 0, 0.85611, -1.09382), .Dim = c(6L, 16L), .Dimnames = list(     NULL, c("i1", "i2", "i3", "i4", "i5", "i6", "i7", "i8", "i9",      "i10", "i11", "i12", "i13", "i14", "i15", "i16"))), mean = structure(c(0,  0, 0, 0, 0), .Names = c("X6", "X7", "X8", "X9", "X10")), cov = structure(c(1,  0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,  0, 0, 1), .Dim = c(5L, 5L))), .Names = c("param", "mean", "cov" ))), .Names = c("G1", "G2"))

for (col in colnames(data.g1)) data.g1[[col]] <- mxFactor(data.g1[[col]], levels=0:1)
for (col in colnames(data.g2)) data.g2[[col]] <- mxFactor(data.g2[[col]], levels=0:1)

# This function creates a model for a single group.
mk.model <- function(name, data, latent.free) {
  numItems <- dim(data)[2]
  dims <- (1 + numItems/4)
  numPersons <- dim(data)[1]
  spec <- list()
  spec[1:numItems] <- list(rpf.grm(factors = dims))
  
  ip.mat <- mxMatrix(name="item", nrow=dims+1, ncol=numItems,
                     values=c(1.4,rep(0,dims-1),0), free=FALSE)
  rownames(ip.mat) <- c(paste('f', 1:dims, sep=""), "b")
  ip.mat$free[1,] <- TRUE
  ip.mat$free[dims+1,] <- TRUE
  colnames(ip.mat) <- colnames(data)
  for (ix in seq(0,numItems-1,4)) {
    ip.mat$values[2 + ix/4, 1:4 + ix] <- 1
    ip.mat$free[2 + ix/4, 1:4 + ix] <- TRUE
  }
  
  for (ix in 1:numItems) {
    for (px in 1:nrow(ip.mat)) {
      if (!ip.mat$free[px,ix]) next
      ip.mat$labels[px,ix] <- paste(c('p',ix,',',rownames(ip.mat)[px]), collapse='')
    }
  }

  m.mat <- mxMatrix(name="mean", nrow=1, ncol=dims, values=0, free=latent.free)
  colnames(m.mat) <- paste('f', 1:dims, sep="")
  cov.mat.free <- FALSE
  if (latent.free) {
    cov.mat.free <- diag(dims)==1
  }
  cov.mat <- mxMatrix(name="cov", nrow=dims, ncol=dims, values=diag(dims),
                      free=cov.mat.free, lbound=1e-2)
  dimnames(cov.mat) <- list(paste('f', 1:dims, sep=""), paste('f', 1:dims, sep=""))
  
  lname <- paste(name, "latent", sep="")
  latent <- mxModel(lname, m.mat, cov.mat,
		    mxDataDynamic("cov", expectation=paste(name, "expectation", sep=".")),
		    mxExpectationNormal(covariance="cov", means="mean"),
		    mxFitFunctionML())

  m1 <- mxModel(model=name, ip.mat,
                mxData(observed=data, type="raw"),
                mxExpectationBA81(
		    ItemSpec=spec,
		    mean=paste(lname, "mean",sep="."),
		    cov=paste(lname, "cov", sep="."),
		    qpoints=21, qwidth=5),
                mxFitFunctionML())
  
  list(ifa=m1, latent=latent)
}

groups <- paste("g", 1:2, sep="")

if (1) {
	# Before fitting the model, check EAP score output against flexMIRT
  g1 <- mk.model("g1", data.g1, TRUE)
  g2 <- mk.model("g2", data.g2, FALSE)
  g1$ifa$item$values[,] <- fm$G1$param
  g1$latent$mean$values <- t(fm$G1$mean)
  g1$latent$cov$values <- fm$G1$cov
  g2$ifa$item$values[,] <- fm$G2$param
  
  # Also check whether we compute the LL correctly given flexMIRT's parameters.
    cModel <- mxModel(model="cModel", c(g1, g2),
              	mxFitFunctionMultigroup(groups),
		      	mxComputeOnce('fitfunction', 'fit')
	)
    cModel.fit <- mxRun(cModel)
    omxCheckCloseEnough(cModel.fit$fitfunction$result, flexmirt.LL, 1e-4)
  
  i1 <- mxModel(cModel,
                mxComputeSequence(steps=list(
                  mxComputeOnce('fitfunction', 'information', "meat"),
                  mxComputeStandardError(),
                  mxComputeHessianQuality())))
  i1 <- mxRun(i1)
  
#  cat(deparse(round(i1$output$standardErrors,3)))
  se <- c(0.085, 0.109, 0.078, 0.131, 0.199, 0.098, 0.148,  0.183, 0.104, 0.165,
          0.134, 0.123, 0.109, 0.149, 0.095, 0.13,  0.123, 0.097, 0.186, 0.23,
          0.124, 0.125, 0.25, 0.138, 0.135,  0.169, 0.101, 0.199, 0.188, 0.127,
          0.084, 0.122, 0.078, 0.146,  0.232, 0.14, 0.104, 0.17, 0.128, 0.174, 0.093,
          0.432, 0.254,  0.324, 0.175, 0.242, 0.125, 0.146, 0.265, 0.1, 0.141, 0.201,
          0.101, 0.189, 0.192, 0.13)
  omxCheckCloseEnough(c(i1$output$standardErrors), se, .01)
  omxCheckCloseEnough(log(i1$output$conditionNumber), 5.1, .2)
}

omxIFAComputePlan <- function(groups) {
  latent.plan <- NULL
  latentFG <- apply(expand.grid(paste(groups,"latent",sep=""), c('mean','cov')), 1, paste, collapse='.')
  if (0) {
    latent.plan <- mxComputeSequence(list(mxComputeOnce(paste(groups, 'expectation', sep='.')),
					  mxComputeOnce(paste(groups, 'expectation', sep='.'),
                                                        "latentDistribution", "copy"),  # c('mean','covariance')
                                          mxComputeOnce('fitfunction', "set-starting-values")),
                                     freeSet=latentFG)
  } else {
	  # default tolerance isn't good enough for stable S-EM results
#    latent.plan <- mxComputeGradientDescent(latentFG, fitfunction="latent.fitfunction")
    latent.plan <- mxComputeNewtonRaphson(latentFG, fitfunction="latent.fitfunction")
  }

  mxComputeSequence(steps=list(
    mxComputeEM(paste(groups, 'expectation', sep='.'), 'scores',
                mxComputeSequence(list(
		    mxComputeNewtonRaphson(freeSet=paste(groups, 'item', sep="."), verbose=0L),
		    latent.plan)),
                #tolerance=1e-10, information="mr1991",
                infoArgs=list(fitfunction=c("fitfunction", "latent.fitfunction")),
		verbose=0L),
    mxComputeStandardError(),
    mxComputeHessianQuality()
  ))
}

latent <- mxModel("latent", mxFitFunctionMultigroup(paste0(groups, "latent")))

	# Now actually fit the model.
  g1 <- mk.model("g1", data.g1, TRUE)
  g2 <- mk.model("g2", data.g2, FALSE)
  grpModel <- mxModel(model="groupModel", g1, g2, latent,
                      mxFitFunctionMultigroup(groups),
                      omxIFAComputePlan(groups))
  
  #grpModel <- mxOption(grpModel, "Number of Threads", 1)
  
  # NPSOL options:
#   grpModel <- mxOption(grpModel, "Analytic Gradients", 'Yes')
#   grpModel <- mxOption(grpModel, "Verify level", '-1')
#   grpModel <- mxOption(grpModel, "Function precision", '1.0E-7')
  
  grpModel <- mxRun(grpModel)

 omxCheckCloseEnough(grpModel$output$fit, flexmirt.LL, .01)
omxCheckCloseEnough(summary(grpModel)$informationCriteria['AIC:','par'], 30107.30, .01)
omxCheckCloseEnough(summary(grpModel)$informationCriteria['BIC:','par'], 30420.953, .01)

  omxCheckCloseEnough(grpModel$submodels$g2$matrices$item$values,
                      fm$G2$param, .02)
  omxCheckCloseEnough(grpModel$submodels$g1latent$matrices$mean$values, t(fm$G1$mean), .02)
  omxCheckCloseEnough(grpModel$submodels$g1latent$matrices$cov$values, fm$G1$cov, .1)
  
  semse <- c(0.083, 0.104, 0.077, 0.133, 0.198, 0.097, 0.147,  0.191, 0.102, 0.163, 0.131, 0.122,
             0.11, 0.149, 0.093, 0.13,  0.121, 0.095, 0.188, 0.228, 0.122, 0.124, 0.255, 0.139,
             0.137,  0.171, 0.1, 0.207, 0.193, 0.126, 0.086, 0.115, 0.076, 0.142,  0.212, 0.136,
             0.099, 0.156, 0.12, 0.143, 0.096, 0.391, 0.241,  0.284, 0.18, 0.236, 0.126, 0.145,
             0.26, 0.099, 0.142, 0.201,  0.099, 0.178, 0.193, 0.126)
  # cat(deparse(round(grpModel$output$standardErrors,3)))
 print( max(abs(c(grpModel$output$standardErrors) - semse)))
  
  # These are extremely sensitive to small differences in model estimation.
#omxCheckCloseEnough(c(grpModel$output$standardErrors), semse, .1)
#omxCheckCloseEnough(log(grpModel$output$conditionNumber), 5.5, 1)
#omxCheckTrue(grpModel$output$infoDefinite)
  
emstat <- grpModel$compute$steps[[1]]$output
omxCheckCloseEnough(emstat$EMcycles, 57, 16)
#omxCheckCloseEnough(emstat$totalMstep, 334, 40)  # includes latent distribution
#omxCheckCloseEnough(emstat$semProbeCount, 152, 10)

print(grpModel$output$backendTime)

refModels <- mxRefModels(grpModel, run=TRUE)
omxCheckCloseEnough(refModels[['Independence']]$output$fit, 36611.98, .01)