1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
# This data is from an email:
#
# Date: Wed, 06 Feb 2013 19:49:24 -0800
# From: Li Cai <lcai at ucla.edu>
# To: Joshua N Pritikin <jpritikin at pobox.com>
# Subject: Re: how did you control item bias in Cai (2010, p. 592) ?
#options(error = browser)
library(OpenMx)
library(rpf)
flexmirt.LL <- 29995.30418
# read data
data.raw <- suppressWarnings(try(read.csv("models/nightly/data/cai2009.csv"), silent=TRUE))
if (is(data.raw, "try-error")) data.raw <- read.csv("data/cai2009.csv")
data.g1 <- as.data.frame(data.raw[data.raw$G==1, 2:13])
data.g2 <- as.data.frame(data.raw[data.raw$G==2, 2:17])
if (0) {
# for flexmirt
write.table(data.g1, "cai2009-g1.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
write.table(data.g2, "cai2009-g2.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
fm <- read.flexmirt("~/irt/cai2009/cai2009-prm.txt")
fm$G1$spec <- NULL
fm$G2$spec <- NULL
}
# from flexMIRT
fm <- structure(list(G1 = structure(list(param = structure(c(0.992675, 0.646717, 0, 0, 0.876469, 1.41764, 1.25402, 0, 0, 0.0826927, 1.76547, 1.20309, 0, 0, -0.346706, 2.1951, 0.844399, 0, 0, -0.978301, 1.37774, 0, 1.06694, 0, 0.992373, 1.80365, 0, 0.814109, 0, 0.213559, 2.15718, 0, 1.58086, 0, -0.418129, 1.18201, 0, 1.56533, 0, -1.24173, 1.80474, 0, 0, 1.0774, 0.810718, 2.60754, 0, 0, 1.23507, 0.0598008, 1.01874, 0, 0, 0.724402, -0.294029, 1.68916, 0, 0, 1.37546, -1.13333 ), .Dim = c(5L, 12L), .Dimnames = list(NULL, c("i1", "i2", "i3", "i4", "i5", "i6", "i7", "i8", "i9", "i10", "i11", "i12"))), mean = structure(c(0.822622, -0.290462, 0.19672, 0.733993), .Names = c("X6", "X7", "X8", "X9" )), cov = structure(c(0.826046, 0, 0, 0, 0, 1.656, 0, 0, 0, 0, 1.11263, 0, 0, 0, 0, 1.07878), .Dim = c(4L, 4L))), .Names = c("param", "mean", "cov")),
G2 = structure(list(param = structure(c(0.992675, 0.646717, 0, 0, 0, 0.876469, 1.41764, 1.25402, 0, 0, 0, 0.0826927, 1.76547, 1.20309, 0, 0, 0, -0.346706, 2.1951, 0.844399, 0, 0, 0, -0.978301, 1.37774, 0, 1.06694, 0, 0, 0.992373, 1.80365, 0, 0.814109, 0, 0, 0.213559, 2.15718, 0, 1.58086, 0, 0, -0.418129, 1.18201, 0, 1.56533, 0, 0, -1.24173, 1.80474, 0, 0, 1.0774, 0, 0.810718, 2.60754, 0, 0, 1.23507, 0, 0.0598008, 1.01874, 0, 0, 0.724402, 0, -0.294029, 1.68916, 0, 0, 1.37546, 0, -1.13333, 1.75531, 0, 0, 0, 1.20652, 0.875564, 1.26308, 0, 0, 0, 1.25013, 0.196607, 1.44526, 0, 0, 0, 0.990354, -0.351181, 1.89461, 0, 0, 0, 0.85611, -1.09382), .Dim = c(6L, 16L), .Dimnames = list( NULL, c("i1", "i2", "i3", "i4", "i5", "i6", "i7", "i8", "i9", "i10", "i11", "i12", "i13", "i14", "i15", "i16"))), mean = structure(c(0, 0, 0, 0, 0), .Names = c("X6", "X7", "X8", "X9", "X10")), cov = structure(c(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1), .Dim = c(5L, 5L))), .Names = c("param", "mean", "cov" ))), .Names = c("G1", "G2"))
for (col in colnames(data.g1)) data.g1[[col]] <- mxFactor(data.g1[[col]], levels=0:1)
for (col in colnames(data.g2)) data.g2[[col]] <- mxFactor(data.g2[[col]], levels=0:1)
# This function creates a model for a single group.
mk.model <- function(name, data, latent.free) {
numItems <- dim(data)[2]
dims <- (1 + numItems/4)
numPersons <- dim(data)[1]
spec <- list()
spec[1:numItems] <- list(rpf.grm(factors = dims))
ip.mat <- mxMatrix(name="item", nrow=dims+1, ncol=numItems,
values=c(1.4,rep(0,dims-1),0), free=FALSE)
rownames(ip.mat) <- c(paste('f', 1:dims, sep=""), "b")
ip.mat$free[1,] <- TRUE
ip.mat$free[dims+1,] <- TRUE
colnames(ip.mat) <- colnames(data)
for (ix in seq(0,numItems-1,4)) {
ip.mat$values[2 + ix/4, 1:4 + ix] <- 1
ip.mat$free[2 + ix/4, 1:4 + ix] <- TRUE
}
for (ix in 1:numItems) {
for (px in 1:nrow(ip.mat)) {
if (!ip.mat$free[px,ix]) next
ip.mat$labels[px,ix] <- paste(c('p',ix,',',rownames(ip.mat)[px]), collapse='')
}
}
m.mat <- mxMatrix(name="mean", nrow=1, ncol=dims, values=0, free=latent.free)
colnames(m.mat) <- paste('f', 1:dims, sep="")
cov.mat.free <- FALSE
if (latent.free) {
cov.mat.free <- diag(dims)==1
}
cov.mat <- mxMatrix(name="cov", nrow=dims, ncol=dims, values=diag(dims),
free=cov.mat.free, lbound=1e-2)
dimnames(cov.mat) <- list(paste('f', 1:dims, sep=""), paste('f', 1:dims, sep=""))
lname <- paste(name, "latent", sep="")
latent <- mxModel(lname, m.mat, cov.mat,
mxDataDynamic("cov", expectation=paste(name, "expectation", sep=".")),
mxExpectationNormal(covariance="cov", means="mean"),
mxFitFunctionML())
m1 <- mxModel(model=name, ip.mat,
mxData(observed=data, type="raw"),
mxExpectationBA81(
ItemSpec=spec,
mean=paste(lname, "mean",sep="."),
cov=paste(lname, "cov", sep="."),
qpoints=21, qwidth=5),
mxFitFunctionML())
list(ifa=m1, latent=latent)
}
groups <- paste("g", 1:2, sep="")
if (1) {
# Before fitting the model, check EAP score output against flexMIRT
g1 <- mk.model("g1", data.g1, TRUE)
g2 <- mk.model("g2", data.g2, FALSE)
g1$ifa$item$values[,] <- fm$G1$param
g1$latent$mean$values <- t(fm$G1$mean)
g1$latent$cov$values <- fm$G1$cov
g2$ifa$item$values[,] <- fm$G2$param
# Also check whether we compute the LL correctly given flexMIRT's parameters.
cModel <- mxModel(model="cModel", c(g1, g2),
mxFitFunctionMultigroup(groups),
mxComputeOnce('fitfunction', 'fit')
)
cModel.fit <- mxRun(cModel)
omxCheckCloseEnough(cModel.fit$fitfunction$result, flexmirt.LL, 1e-4)
i1 <- mxModel(cModel,
mxComputeSequence(steps=list(
mxComputeOnce('fitfunction', 'information', "meat"),
mxComputeStandardError(),
mxComputeHessianQuality())))
i1 <- mxRun(i1)
# cat(deparse(round(i1$output$standardErrors,3)))
se <- c(0.085, 0.109, 0.078, 0.131, 0.199, 0.098, 0.148, 0.183, 0.104, 0.165,
0.134, 0.123, 0.109, 0.149, 0.095, 0.13, 0.123, 0.097, 0.186, 0.23,
0.124, 0.125, 0.25, 0.138, 0.135, 0.169, 0.101, 0.199, 0.188, 0.127,
0.084, 0.122, 0.078, 0.146, 0.232, 0.14, 0.104, 0.17, 0.128, 0.174, 0.093,
0.432, 0.254, 0.324, 0.175, 0.242, 0.125, 0.146, 0.265, 0.1, 0.141, 0.201,
0.101, 0.189, 0.192, 0.13)
omxCheckCloseEnough(c(i1$output$standardErrors), se, .01)
omxCheckCloseEnough(log(i1$output$conditionNumber), 5.1, .2)
}
omxIFAComputePlan <- function(groups) {
latent.plan <- NULL
latentFG <- apply(expand.grid(paste(groups,"latent",sep=""), c('mean','cov')), 1, paste, collapse='.')
if (0) {
latent.plan <- mxComputeSequence(list(mxComputeOnce(paste(groups, 'expectation', sep='.')),
mxComputeOnce(paste(groups, 'expectation', sep='.'),
"latentDistribution", "copy"), # c('mean','covariance')
mxComputeOnce('fitfunction', "set-starting-values")),
freeSet=latentFG)
} else {
# default tolerance isn't good enough for stable S-EM results
# latent.plan <- mxComputeGradientDescent(latentFG, fitfunction="latent.fitfunction")
latent.plan <- mxComputeNewtonRaphson(latentFG, fitfunction="latent.fitfunction")
}
mxComputeSequence(steps=list(
mxComputeEM(paste(groups, 'expectation', sep='.'), 'scores',
mxComputeSequence(list(
mxComputeNewtonRaphson(freeSet=paste(groups, 'item', sep="."), verbose=0L),
latent.plan)),
#tolerance=1e-10, information="mr1991",
infoArgs=list(fitfunction=c("fitfunction", "latent.fitfunction")),
verbose=0L),
mxComputeStandardError(),
mxComputeHessianQuality()
))
}
latent <- mxModel("latent", mxFitFunctionMultigroup(paste0(groups, "latent")))
# Now actually fit the model.
g1 <- mk.model("g1", data.g1, TRUE)
g2 <- mk.model("g2", data.g2, FALSE)
grpModel <- mxModel(model="groupModel", g1, g2, latent,
mxFitFunctionMultigroup(groups),
omxIFAComputePlan(groups))
#grpModel <- mxOption(grpModel, "Number of Threads", 1)
# NPSOL options:
# grpModel <- mxOption(grpModel, "Analytic Gradients", 'Yes')
# grpModel <- mxOption(grpModel, "Verify level", '-1')
# grpModel <- mxOption(grpModel, "Function precision", '1.0E-7')
grpModel <- mxRun(grpModel)
omxCheckCloseEnough(grpModel$output$fit, flexmirt.LL, .01)
omxCheckCloseEnough(summary(grpModel)$informationCriteria['AIC:','par'], 30107.30, .01)
omxCheckCloseEnough(summary(grpModel)$informationCriteria['BIC:','par'], 30420.953, .01)
omxCheckCloseEnough(grpModel$submodels$g2$matrices$item$values,
fm$G2$param, .02)
omxCheckCloseEnough(grpModel$submodels$g1latent$matrices$mean$values, t(fm$G1$mean), .02)
omxCheckCloseEnough(grpModel$submodels$g1latent$matrices$cov$values, fm$G1$cov, .1)
semse <- c(0.083, 0.104, 0.077, 0.133, 0.198, 0.097, 0.147, 0.191, 0.102, 0.163, 0.131, 0.122,
0.11, 0.149, 0.093, 0.13, 0.121, 0.095, 0.188, 0.228, 0.122, 0.124, 0.255, 0.139,
0.137, 0.171, 0.1, 0.207, 0.193, 0.126, 0.086, 0.115, 0.076, 0.142, 0.212, 0.136,
0.099, 0.156, 0.12, 0.143, 0.096, 0.391, 0.241, 0.284, 0.18, 0.236, 0.126, 0.145,
0.26, 0.099, 0.142, 0.201, 0.099, 0.178, 0.193, 0.126)
# cat(deparse(round(grpModel$output$standardErrors,3)))
print( max(abs(c(grpModel$output$standardErrors) - semse)))
# These are extremely sensitive to small differences in model estimation.
#omxCheckCloseEnough(c(grpModel$output$standardErrors), semse, .1)
#omxCheckCloseEnough(log(grpModel$output$conditionNumber), 5.5, 1)
#omxCheckTrue(grpModel$output$infoDefinite)
emstat <- grpModel$compute$steps[[1]]$output
omxCheckCloseEnough(emstat$EMcycles, 57, 16)
#omxCheckCloseEnough(emstat$totalMstep, 334, 40) # includes latent distribution
#omxCheckCloseEnough(emstat$semProbeCount, 152, 10)
print(grpModel$output$backendTime)
refModels <- mxRefModels(grpModel, run=TRUE)
omxCheckCloseEnough(refModels[['Independence']]$output$fit, 36611.98, .01)
|