File: test-LatentAR-190605.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (130 lines) | stat: -rw-r--r-- 4,893 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
library(OpenMx)
library(mvtnorm)
library(testthat)
context("LatentAR-190605")

skip_on_cran()

if (1) {
  # Not sure if this simulation exactly matches the model. Parameter
  # recovery might be better with a better simulation.

  suppressWarnings(RNGversion("3.5"))
  set.seed(1)
  tsData <- NULL
  
  N <- 500
  muI <- runif(1)
  muS <- runif(1)
  muB <- 1       # 1.0 is no effect
  Ve <- .2
  VI <- .5
  VS <- .5
  IScov <- -.25
  VB <- .2
  for (n in 1:N) {
    got <- rmvnorm(1, c(muI,muS), sigma=matrix(c(VI,IScov,IScov,VS),2,2))
    I1 <- got[1]
    S1 <- got[2]
    B1 <- rnorm(1, muB, VB)
    part <- rep(0, 6)
    part[1] <- rnorm(1,0,.2) + I1
    for (x in 1:5) {
      prev <- part[x] * B1
      part[x+1] <- part[x+1] + prev + rnorm(1, 0, Ve)
    }
    part <- part + S1 * 0:5
    tsData <- rbind(tsData, part)
  }
  colnames(tsData) <- paste0('t',1:ncol(tsData))
  tsData <- as.data.frame(tsData)
}

# Create the vectors of variable names
tManifests <- colnames(tsData)
tLGCLatents <- c("I", "S")
tARLatent <- c("B")
tOps <- paste("op", c(1:5), sep="")

# This fits a latent growth curve to "prewhiten the time series" 
testARModel <- mxModel(model="testAR", type="RAM",
    manifestVars=tManifests,
    latentVars=c(tLGCLatents,tARLatent,tOps), #
    mxPath(from="I", to='t1', arrows=1, free=FALSE, values=1),
    mxPath(from="S", to=tManifests, arrows=1, free=FALSE, values=c(0:5)),
    mxPath(from="I", to="S", arrows=2, free=TRUE, values=0, labels="IScov"),
    mxPath(from="B", to=tOps, arrows=1, free=FALSE, values=1),
    mxPath(from=tManifests[1:5], to=tOps, arrows=1, free=FALSE, values=1),
    mxPath(from=tOps, to=tManifests[2:6], arrows=1, free=FALSE, values=1),
    
    mxPath(from=tManifests, arrows=2, free=TRUE, values=1, labels="Ve"),
    mxPath(from=c(tLGCLatents), arrows=2, free=TRUE, values=c(.53,.52), labels=c("VI", "VS")),
    mxPath(from=c(tARLatent), arrows=2, free=TRUE, values=.11, labels=c("VB")),

    mxPath(from="one", to=c(tLGCLatents), arrows=1, free=TRUE, values=c(.5,.4), labels=c("muI", "muS")),
    mxPath(from="one", to=c(tARLatent), arrows=1, free=TRUE, values=1, labels=c("muB")),
    mxPath(from="one", to=tOps, arrows=1, free=FALSE, values=1),
    mxData(observed=cov(tsData), type='cov', means=colMeans(tsData),
           numObs=nrow(tsData))
)

#print(colnames(testARModel$A))

testARModel$expectation$isProductNode <- colnames(testARModel$A) %in% tOps
#testARModel$expectation$isProductNode <- rep(FALSE, nrow(testARModel$A))

testARModelFit <- mxRun(testARModel)
summary(testARModelFit)

expect_equal(testARModelFit$output$fit, -1660.948, .01)
expect_equivalent(coef(testARModelFit)['muI'], muI, tolerance=.06)
expect_equivalent(coef(testARModelFit)['muS'], muS, tolerance=.1)
expect_equivalent(coef(testARModelFit)['muB'], muB, tolerance=.6)
expect_equivalent(coef(testARModelFit)['Ve'], Ve, tolerance=.2)
expect_equivalent(coef(testARModelFit)['VI'], VI, .4)
expect_equivalent(coef(testARModelFit)['VS'], VS, .2)
expect_equivalent(coef(testARModelFit)['IScov'], IScov, .04)
expect_equivalent(coef(testARModelFit)['VB'], VB, .15)

if (0) {
  ## library(ggplot2)
  ## library(reshape2)
  ## tsData$row <- 1:nrow(tsData)
  ## df <- melt(tsData, id.vars="row")
  ## ggplot(df) +
  ##   geom_line(aes(x=variable, y=value, group=row), alpha=.1)
}


#------------------------------------------------------------------------------
# Repeat test but now using the frontend productVars interface

testARProdModel <- mxModel(model="testARProd", type="RAM",
    manifestVars=tManifests,
    latentVars=c(tLGCLatents, tARLatent),
    productVars=tOps,
    mxPath(from="I", to='t1', arrows=1, free=FALSE, values=1),
    mxPath(from="S", to=tManifests, arrows=1, free=FALSE, values=c(0:5)),
    mxPath(from="I", to="S", arrows=2, free=TRUE, values=0, labels="IScov"),
    mxPath(from="B", to=tOps, arrows=1, free=FALSE, values=1),
    mxPath(from=tManifests[1:5], to=tOps, arrows=1, free=FALSE, values=1),
    mxPath(from=tOps, to=tManifests[2:6], arrows=1, free=FALSE, values=1),
    
    mxPath(from=tManifests, arrows=2, free=TRUE, values=1, labels="Ve"),
    mxPath(from=c(tLGCLatents), arrows=2, free=TRUE, values=c(.53,.52), labels=c("VI", "VS")),
    mxPath(from=c(tARLatent), arrows=2, free=TRUE, values=.11, labels=c("VB")),

    mxPath(from="one", to=c(tLGCLatents), arrows=1, free=TRUE, values=c(.5,.4), labels=c("muI", "muS")),
    mxPath(from="one", to=c(tARLatent), arrows=1, free=TRUE, values=1, labels=c("muB")),
    mxData(observed=cov(tsData), type='cov', means=colMeans(tsData),
           numObs=nrow(tsData))
)

# N.B. A much shorter test would just check the -2LL at the starting values
#  for the two models.

testARProdModelFit <- mxRun(testARProdModel)
expect_equal(testARProdModelFit$output$fit, testARModelFit$output$fit, .001)

#------------------------------------------------------------------------------
# End