File: BootstrapParallel.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (150 lines) | stat: -rw-r--r-- 5,087 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#
#   Copyright 2007-2018 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.


# -----------------------------------------------------------------------
# Program: BootstrapParallel.R  
# Author: Unknown
#  Date: 9999.99.99 
#
# ModelType: Parallel
# DataType: Continuous
# Field: None
#
# Purpose:
#      Bootstrap parallel models
#
# RevisionHistory:
#      Ross Gore -- 2011.06.16 updated & reformatted
# -----------------------------------------------------------------------

#options(error = utils::recover)
require(OpenMx)

lambda <- matrix(c(.8, .5, .7, 0), 4, 1)
nObs <- 500
nReps <- 30
nVar <- nrow(lambda)
specifics <- diag(nVar)
chl <- chol(lambda %*% t(lambda) + specifics)
# parameters for the simulation: lambda = factor loadings,
# specifics = specific variances
# -----------------------------------------------------------------------------


pStrt <- 3
pEnd <- pStrt + 2*nVar - 1
hStrt <- pEnd + 1
hEnd <- hStrt + 2*nVar - 1
# indices for parameters and hessian estimate in results
# -----------------------------------------------------------------------------


dn <- list()
dn[[1]] <- paste("Var", 1:4, sep="")
dn[[2]] <- dn[[1]]
# dimension names for OpenMx
# -----------------------------------------------------------------------------


randomCov <- function(nObs, nVar, chl, dn) {
  x <- matrix(rnorm(nObs*nVar), nObs, nVar)
  x <- x %*% chl
  thisCov <- cov(x)
  dimnames(thisCov) <- dn
  return(thisCov)  
}
# function to get a covariance matrix
# -----------------------------------------------------------------------------

createNewModel <- function(index, prefix, model) {
	modelname <- paste(prefix, index, sep='')
	data <- mxData(randomCov(nObs, nVar, chl, dn), type="cov", numObs=nObs)
	model <- mxModel(model, data)
	model <- mxRename(model, modelname)
	return(model)
}

getStats <- function(model) {
  H <- model$output$hessian
	retval <- c(code=model$output$status[[1]],
		grad=sqrt(sum(model$output$gradient^2)),
		model$output$estimate,
		model$output$standardErrors)
	return(retval)
}



obsCov <- randomCov(nObs, nVar, chl, dn)
# initialize obsCov for MxModel
# -----------------------------------------------------------------------------

results <- matrix(0, nReps, hEnd)
dnr <- c("inform", "normG", paste("lambda", 1:nVar, sep=""),
         paste("specifics", 1:nVar, sep=""),
         paste("hessLambda", 1:nVar, sep=""),
         paste("hessSpecifics", 1:nVar, sep=""))
dimnames(results)[[2]] <- dnr
# results matrix: get results for each simulation
# -----------------------------------------------------------------------------


template <- mxModel("stErrSim",
                       mxMatrix(name="lambda", type="Full", nrow=4, ncol=1,
                                free=TRUE, values=c(.8, .5, .7, 0)),
                       mxMatrix(name="specifics", type="Diag", nrow=4,
                                free=TRUE, values=rep(1, 4)),
                       mxAlgebra(lambda %*% t(lambda) + specifics,
                                 name="preCov", dimnames=dn),
                       mxData(observed=obsCov, type="cov", numObs=nObs),
                       mxFitFunctionML(),
                      mxExpectationNormal(covariance='preCov'),
                       independent = TRUE)
# instantiate MxModel
# -----------------------------------------------------------------------------

submodels <- lapply(1:nReps, createNewModel, 'stErrSim', template)

names(submodels) <- imxExtractNames(submodels)

topModel <- mxModel('container', submodels)

modelResults <- mxRun(topModel, silent=TRUE, suppressWarnings=TRUE)

results <- t(omxSapply(modelResults$submodels, getStats))

# get rid of bad covergence results
results2 <- results[which(results[,"code"] <= 1),]

# -----------------------------------------------------------------------------

means <- colMeans(results2)
stdevs <- apply(results2, 2, sd)
sumResults <- data.frame(matrix(dnr[pStrt:pEnd], 2*nVar, 1,
                                dimnames=list(NULL, "Parameter")))
sumResults$mean <- means[pStrt:pEnd]
sumResults$obsStDev <- stdevs[pStrt:pEnd]
sumResults$meanHessEst <- means[hStrt:hEnd]
# summarize the results
# -----------------------------------------------------------------------------

print(sumResults)
# print results
# -----------------------------------------------------------------------------

omxCheckCloseEnough(means["grad"], 0, .2)
omxCheckCloseEnough(sumResults$mean, c(lambda, diag(specifics)), .2)
omxCheckCloseEnough(sumResults$obsStDev, sumResults$meanHessEst, .1)