1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
#
# Copyright 2007-2021 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ---------------------------------------------------------------------
# Program: MultivariateRegRaw-OpenMx100214.R
# Author: Steven M. Boker
# Date: Sun Feb 14 14:23:50 EST 2010
#
# This program fits a FIML multiple regression model to the
# multiData simulated data.
#
#
# ---------------------------------------------------------------------
# Revision History
# -- Sun Feb 14 14:23:53 EST 2010
# Created MultivariateRegRaw-OpenMx100214.R.
#
# ---------------------------------------------------------------------
# ----------------------------------
# Read libraries and set options.
library(OpenMx)
# ----------------------------------
# Read the data and print descriptive statistics.
data(multiData1)
# ----------------------------------
# Build an OpenMx multiple regression model using y and x1
predictors <- c("x2", "x3", "x4")
outcomes <- c("y", "x1")
manifests <- names(multiData1)
multivariateRegModel <- mxModel("FIML Multiple Regression of y on x1, x2, x3 and x4",
type="RAM",
manifestVars=manifests,
mxPath(from=predictors, to=outcomes,
# arrows=1, all=TRUE,
arrows=1, connect="all.pairs",
free=TRUE, values=.2,
labels=c("b21", "b22", "b31", "b32", "b41", "b42")),
mxPath(from="x1", to="y",
arrows=1,
free=TRUE, values=.2,
labels="b11"),
mxPath(from=predictors, to=predictors,
# arrows=2, all=TRUE,
arrows=2, connect="unique.pairs",
free=TRUE, values=.2),
mxPath(from=manifests, to=manifests,
arrows=2,
free=TRUE, values=.8,
labels=c("VarEx1", "VarX2", "VarX3", "VarX4", "VarEy")),
mxPath(from="one", to=manifests,
arrows=1, free=TRUE, values=.1,
labels=c("MeanX1", "MeanX2", "MeanX3", "MeanX4", "MeanY")),
mxData(observed=multiData1, type="raw")
)
multivariateRegModelOut <- mxRun(multivariateRegModel, suppressWarnings=TRUE)
summary(multivariateRegModelOut)
# ----------------------------------
# check for correct values
expectVal <- c(0.04427, 0.26689, 0.306983, 0.187537, 0.398635, 0.138109,
0.471855, 0.780697, 1.555604, 0.564914, 2.102769, 0.434357, 0.650671,
2.552984, 0.533376, -0.678459, 1.974178, 3.073289, 4.055537,
0.060049)
expectSE <- c(0.036963, 0.033694, 0.029546, 0.02947, 0.025327, 0.026034,
0.022115, 0.049375, 0.098387, 0.084745, 0.13299, 0.091222, 0.107629,
0.161465, 0.033733, 0.12533, 0.055778, 0.06485, 0.071456, 0.106583
)
expectMin <- 7615.126
omxCheckCloseEnough(expectMin, multivariateRegModelOut$output$minimum, 0.001)
omxCheckCloseEnough(expectVal, multivariateRegModelOut$output$estimate, 0.002)
omxCheckCloseEnough(expectSE,
as.vector(multivariateRegModelOut$output[['standardErrors']]), 0.001)
# ----------------------------
multiData1$x1o <- cut(multiData1$x1, breaks = 4, ordered_result = TRUE)
outcomes <- c('y', 'x1o')
r2 <- mxModel("regr", type="RAM",
latentVars = predictors,
manifestVars = outcomes,
mxPath("one", predictors, free=FALSE, labels=paste0('data.', predictors)),
mxPath(predictors, outcomes),
mxPath("one", outcomes),
mxPath(outcomes, arrows=2, values=1),
mxThreshold(vars='x1o', nThresh=3),
mxData(observed=multiData1, type="raw"),
mxFitFunctionWLS(),
mxComputeSequence(list(
GD=mxComputeGradientDescent(),
CK=mxComputeCheckpoint(toReturn = TRUE, vcov=TRUE, vcovWLS=TRUE, vcovFilter =
c("regr.data.y.x2", "regr.data.y.x3",
"regr.data.x1o.th1", "regr.data.x1o.th2")))))
r2 <- mxRun(r2)
l1 <- r2$compute$steps$CK$log
yv <- r2$data$observedStats$y.vcov
x1ov <- r2$data$observedStats$x1o.vcov
omxCheckCloseEnough(l1["regr.data.y.V(intercept):(intercept)"],
yv["(intercept)","(intercept)"])
omxCheckCloseEnough(l1["regr.data.y.Vx2:x2"],
yv["x2","x2"])
omxCheckCloseEnough(l1["regr.data.y.Vx3:x2"],
yv["x3","x2"])
omxCheckCloseEnough(l1["regr.data.y.Vx3:x3"],
yv["x3","x3"])
omxCheckCloseEnough(l1["regr.data.y.Vx4:x4"],
yv["x4","x4"])
omxCheckCloseEnough(l1["regr.data.x1o.Vth1:th1"],
x1ov["th1","th1"])
omxCheckCloseEnough(l1["regr.data.x1o.Vth2:th1"],
x1ov["th2","th1"])
omxCheckCloseEnough(l1["regr.data.x1o.Vth2:th2"],
x1ov["th2","th2"])
omxCheckCloseEnough(l1["regr.data.x1o.Vth3:th3"],
x1ov["th3","th3"])
omxCheckCloseEnough(l1["regr.data.x1o.Vx2:x2"],
x1ov["x2","x2"])
omxCheckCloseEnough(l1["regr.data.x1o.Vx3:x3"],
x1ov["x3","x3"])
omxCheckCloseEnough(l1["regr.data.x1o.Vx4:x4"],
x1ov["x4","x4"])
|