1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
#
# Copyright 2007-2021 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ---------------------------------------------------------------------
# Program: OneFactorCov-OpenMx100221.R
# Author: Steven M. Boker
# Date: Sun Feb 21 13:39:29 EST 2010
#
# This program fits a covariance single factor model to the
# factorExample1.csv simulated data.
#
#
# ---------------------------------------------------------------------
# Revision History
# -- Sun Feb 21 13:39:32 EST 2010
# Created OneFactorCov-OpenMx100221.R.
#
# ---------------------------------------------------------------------
# ----------------------------------
# Read libraries and set options.
require(OpenMx)
library(testthat)
# ----------------------------------
# Read the data and print descriptive statistics.
data(factorExample1)
# ----------------------------------
# Build an OpenMx single factor covariance model with fixed variance
indicators <- names(factorExample1)
latents <- c("F1")
loadingLabels <- paste("b_", indicators, sep="")
uniqueLabels <- paste("U_", indicators, sep="")
meanLabels <- paste("M_", indicators, sep="")
factorVarLabels <- paste("Var_", latents, sep="")
oneFactorCov1 <- mxModel("Single Factor Covariance Model with Fixed Variance",
type="RAM",
manifestVars=indicators,
latentVars=latents,
mxPath(from=latents, to=indicators,
# arrows=1, all=TRUE,
arrows=1, connect="all.pairs",
free=TRUE, values=.2,
labels=loadingLabels),
mxPath(from=indicators,
arrows=2,
free=TRUE, values=.8,
labels=uniqueLabels),
mxPath(from=latents,
arrows=2,
free=FALSE, values=1,
labels=factorVarLabels),
mxData(observed=cov(factorExample1), type="cov", numObs=500)
)
l1 <- omxLocateParameters(oneFactorCov1, "Var_F1", free=FALSE)
expect_equal(nrow(l1), 1)
expect_equal(l1$matrix, "S")
expect_equal(l1$row, 10)
expect_equal(l1$col, 10)
l2 <- omxLocateParameters(oneFactorCov1, "Var_F1", free=NA)
expect_equal(l1, l2)
expect_equal(nrow(omxLocateParameters(oneFactorCov1, "Var_F1")), 0)
oneFactorCov1Out <- mxRun(oneFactorCov1, suppressWarnings=TRUE)
summary(oneFactorCov1Out)
omxCheckError(mxBootstrap(oneFactorCov1Out),
"MxComputeBootstrap: data 'Single Factor Covariance Model with Fixed Variance.data' of type 'cov' cannot have row weights")
# ----------------------------------
# check for correct values
expectVal <- c(0.68396, 0.32482, 0.10887, 0.47441, 0.60181, 1.12064,
1.25934, 0.64739, 0.71873, 0.3528, 0.17619, 0.19354, 0.79988, 0.63306,
0.36763, 0.34024, 0.23404, 0.85441)
expectSE <- c(0.035244, 0.022431, 0.020808, 0.044662, 0.042295, 0.045789,
0.048931, 0.03064, 0.049368, 0.02492, 0.01197, 0.01234, 0.052165,
0.042853, 0.032175, 0.034939, 0.017353, 0.057948)
# cat(deparse(round(oneFactorCov1Out$output$estimate, 5)))
omxCheckCloseEnough(expectVal, oneFactorCov1Out$output$estimate, 0.001)
omxCheckCloseEnough(expectSE,
as.vector(oneFactorCov1Out$output[['standardErrors']]), 0.001)
omxCheckCloseEnough(1435.94, oneFactorCov1Out$output$minimum, 0.001)
# ----------------------------------
# Build an OpenMx single factor covariance model with fixed loading
oneFactorCov2 <- mxModel("Single Factor Covariance Model with Fixed Loading",
type="RAM",
manifestVars=indicators,
latentVars=latents,
mxPath(from=latents, to=indicators,
arrows=1, connect="all.pairs",
free=TRUE, values=.2,
labels=loadingLabels),
mxPath(from=indicators,
arrows=2,
free=TRUE, values=.8,
labels=uniqueLabels),
mxPath(from=latents,
arrows=2,
free=TRUE, values=1,
labels=factorVarLabels),
mxPath(from=latents, to=c("x1"),
arrows=1,
free=FALSE, values=1),
mxData(observed=cov(factorExample1), type="cov", numObs=500)
)
oneFactorCov2Out <- mxRun(oneFactorCov2, suppressWarnings=TRUE)
summary(oneFactorCov2Out)
# ----------------------------------
# check for correct values
expectVal <- c(0.47491, 0.15917, 0.69363, 0.87989, 1.63847, 1.84125,
0.94654, 1.05084, 0.3528, 0.17619, 0.19354, 0.79988, 0.63306, 0.36763,
0.34024, 0.23404, 0.85441, 0.4678)
expectSE <- c(0.035182, 0.030686, 0.067917, 0.066228, 0.078835, 0.085033,
0.051178, 0.077348, 0.02492, 0.01197, 0.01234, 0.052166, 0.042854,
0.032175, 0.034939, 0.017353, 0.057948, 0.048261)
# cat(deparse(round(oneFactorCov2Out$output$estimate, 5)))
omxCheckCloseEnough(expectVal, oneFactorCov2Out$output$estimate, 0.001)
omxCheckCloseEnough(expectSE,
as.vector(oneFactorCov2Out$output[['standardErrors']]), 0.001)
omxCheckCloseEnough(1435.9409, oneFactorCov2Out$output$minimum, 0.001)
|