File: IntroSEM-OneFactorCov.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (161 lines) | stat: -rw-r--r-- 5,364 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#
#   Copyright 2007-2021 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.


# ---------------------------------------------------------------------
# Program: OneFactorCov-OpenMx100221.R
#  Author: Steven M. Boker
#    Date: Sun Feb 21 13:39:29 EST 2010
#
# This program fits a covariance single factor model to the 
#     factorExample1.csv simulated data.
#
#
# ---------------------------------------------------------------------
# Revision History
#    -- Sun Feb 21 13:39:32 EST 2010
#      Created OneFactorCov-OpenMx100221.R.
#
# ---------------------------------------------------------------------

# ----------------------------------
# Read libraries and set options.

require(OpenMx)
library(testthat)

# ----------------------------------
# Read the data and print descriptive statistics.

data(factorExample1)

# ----------------------------------
# Build an OpenMx single factor covariance model with fixed variance

indicators <- names(factorExample1)
latents <- c("F1")
loadingLabels <- paste("b_", indicators, sep="")
uniqueLabels <- paste("U_", indicators, sep="")
meanLabels <- paste("M_", indicators, sep="")
factorVarLabels <- paste("Var_", latents, sep="")

oneFactorCov1 <- mxModel("Single Factor Covariance Model with Fixed Variance",
    type="RAM",
    manifestVars=indicators,
    latentVars=latents,
    mxPath(from=latents, to=indicators, 
#           arrows=1, all=TRUE, 
           arrows=1, connect="all.pairs", 
           free=TRUE, values=.2, 
           labels=loadingLabels),
    mxPath(from=indicators, 
           arrows=2, 
           free=TRUE, values=.8, 
           labels=uniqueLabels),
    mxPath(from=latents,
           arrows=2, 
           free=FALSE, values=1, 
           labels=factorVarLabels),
    mxData(observed=cov(factorExample1), type="cov", numObs=500)
    )

l1 <- omxLocateParameters(oneFactorCov1, "Var_F1", free=FALSE)
expect_equal(nrow(l1), 1)
expect_equal(l1$matrix, "S")
expect_equal(l1$row, 10)
expect_equal(l1$col, 10)

l2 <- omxLocateParameters(oneFactorCov1, "Var_F1", free=NA)
expect_equal(l1, l2)

expect_equal(nrow(omxLocateParameters(oneFactorCov1, "Var_F1")), 0)

oneFactorCov1Out <- mxRun(oneFactorCov1, suppressWarnings=TRUE)

summary(oneFactorCov1Out)

omxCheckError(mxBootstrap(oneFactorCov1Out),
              "MxComputeBootstrap: data 'Single Factor Covariance Model with Fixed Variance.data' of type 'cov' cannot have row weights")

# ----------------------------------
# check for correct values

expectVal <- c(0.68396, 0.32482, 0.10887, 0.47441, 0.60181, 1.12064,
1.25934, 0.64739, 0.71873, 0.3528, 0.17619, 0.19354, 0.79988, 0.63306,
0.36763, 0.34024, 0.23404, 0.85441)

expectSE <- c(0.035244, 0.022431, 0.020808, 0.044662, 0.042295, 0.045789, 
0.048931, 0.03064, 0.049368, 0.02492, 0.01197, 0.01234, 0.052165, 
0.042853, 0.032175, 0.034939, 0.017353, 0.057948)

# cat(deparse(round(oneFactorCov1Out$output$estimate, 5)))
omxCheckCloseEnough(expectVal, oneFactorCov1Out$output$estimate, 0.001)

omxCheckCloseEnough(expectSE, 
    as.vector(oneFactorCov1Out$output[['standardErrors']]), 0.001)

omxCheckCloseEnough(1435.94, oneFactorCov1Out$output$minimum, 0.001)


# ----------------------------------
# Build an OpenMx single factor covariance model with fixed loading


oneFactorCov2 <- mxModel("Single Factor Covariance Model with Fixed Loading",
    type="RAM",
    manifestVars=indicators,
    latentVars=latents,
    mxPath(from=latents, to=indicators, 
           arrows=1, connect="all.pairs",
           free=TRUE, values=.2, 
           labels=loadingLabels),
    mxPath(from=indicators, 
           arrows=2, 
           free=TRUE, values=.8, 
           labels=uniqueLabels),
    mxPath(from=latents,
           arrows=2,
           free=TRUE, values=1, 
           labels=factorVarLabels),
    mxPath(from=latents, to=c("x1"),
           arrows=1, 
           free=FALSE, values=1),
    mxData(observed=cov(factorExample1), type="cov", numObs=500)
    )

oneFactorCov2Out <- mxRun(oneFactorCov2, suppressWarnings=TRUE)

summary(oneFactorCov2Out)

# ----------------------------------
# check for correct values

expectVal <- c(0.47491, 0.15917, 0.69363, 0.87989, 1.63847, 1.84125,
0.94654, 1.05084, 0.3528, 0.17619, 0.19354, 0.79988, 0.63306, 0.36763,
0.34024, 0.23404, 0.85441, 0.4678)

expectSE <- c(0.035182, 0.030686, 0.067917, 0.066228, 0.078835, 0.085033, 
0.051178, 0.077348, 0.02492, 0.01197, 0.01234, 0.052166, 0.042854, 
0.032175, 0.034939, 0.017353, 0.057948, 0.048261)

# cat(deparse(round(oneFactorCov2Out$output$estimate, 5)))
omxCheckCloseEnough(expectVal, oneFactorCov2Out$output$estimate, 0.001)

omxCheckCloseEnough(expectSE, 
    as.vector(oneFactorCov2Out$output[['standardErrors']]), 0.001)

omxCheckCloseEnough(1435.9409, oneFactorCov2Out$output$minimum, 0.001)