File: JointFIMLTest.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (538 lines) | stat: -rw-r--r-- 24,783 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#
#   Copyright 2007-2020 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.


#
#  OpenMx Mixed Ordinal & Continuous Data Example
#  Revision history:
#		Michael Neale 7 Jan 2011
#       Revised Timothy Brick 10 Jan 2011

require(OpenMx)


# First simulation: 2 by 2, one factor for each, uncorrelated.
# Because there's no correlation between the factors, the result of the joint optimization
# is the sum of the ordinal likelihood and the continuous likelihood.
# All estimates on both sides should match.

nOrdinalVariables <- 2
nContinuousVariables <- 2
nVariables <- nOrdinalVariables + nContinuousVariables
nFactors <- 2
nThresholds <- 1
nSubjects <- 200
useOptimizer <- FALSE

loadings <- matrix(c(.7,.7, 0, 0, 0, 0, .7, .7),nrow=nVariables,ncol=nFactors)
startLoads <- loadings * .5
startFree <- as.logical(startLoads * useOptimizer)
residuals <- 1 - diag(loadings %*% t(loadings))
sigma <- loadings %*% t(loadings) + vec2diag(residuals)

mu <- matrix(0,nrow=nVariables,ncol=1)

# Step 1: simulate multivariate normal data for first simulation
set.seed(1234)
continuousData <- data.frame(matrix(mvtnorm::rmvnorm(n=nSubjects,mu,sigma), nrow=nSubjects, ncol=nVariables))

# Step 2: chop continuous variables into ordinal data 
# with nThresholds+1 approximately equal categories, based on 1st variable
quants <- quantile(continuousData[,1],  probs = c((1:nThresholds)/(nThresholds+1)))
ordinalData <- matrix(0,nrow=nSubjects,ncol=nVariables)
for(i in 1:nVariables) {
   ordinalData[,i] <- cut(as.vector(continuousData[,i]),c(-Inf,quants,Inf))
}

# Step 3: make the ordinal variables into R factors and make a joint data frame with both variables in it, innit?
ordinalData <- mxFactor(as.data.frame(ordinalData),levels=c(1:(nThresholds+1)))
jointData <- data.frame(continuousData[,(nOrdinalVariables+1):nVariables],
	ordinalData[,1:nOrdinalVariables])

ordinalNames <- paste("IamOrdinal", 1:nOrdinalVariables, sep="")
continuousNames <- paste("IamContinuous", 1:nContinuousVariables, sep="")
jointNames <- c(continuousNames, ordinalNames)
minOrd <- 1 + nContinuousVariables
maxOrd <- nOrdinalVariables + nContinuousVariables
minCont <- 1
maxCont <- nContinuousVariables
ordCols <- 1:nOrdinalVariables + nContinuousVariables
contCols <- 1:nContinuousVariables
names(jointData) <- jointNames
names(continuousData) <- jointNames
names(ordinalData) <- jointNames 

checkPermutations <- function(model) {
	model$data$.needSort <- FALSE
	d1 <- model$data$observed
	result <- expand.grid(seed=1:10, jointConditionOn=c('ordinal', 'continuous'), fit=NA)
	for (rx in 1:nrow(result)) {
		#print(rx)
		set.seed(result[rx,'seed'])
		model$data$observed <- d1[sample.int(nrow(d1)),]
		rownames(model$data$observed) <- 1:nrow(d1)
		#print(model$data$observed[,model$expectation$dims])
		model$fitfunction$jointConditionOn <- as.character(result[rx,'jointConditionOn'])
		#model$fitfunction$verbose <- 3L
		got <- mxRun(mxModel(model, mxComputeOnce('fitfunction', 'fit')), silent=TRUE)
		result[rx,'fit'] <- got$output$fit
	}
	print(result)
	omxCheckEquals(length(table(round(result$fit,3))), 1)
}

# Step 4: Set up actual models, simulation 1

# Model spec for all continuous case

contModel <- mxModel("contModel", 
    mxMatrix("Full", nVariables, nFactors, values=startLoads, free=startFree, lbound=-.99, ubound=.99, name="L"),
    mxMatrix("Unit", nVariables, 1, name="vectorofOnes"),
    mxMatrix("Zero", 1, nVariables, name="M"),
    mxAlgebra(vectorofOnes - (diag2vec(L %*% t(L))) , name="E"),
    mxAlgebra(L %*% t(L) + vec2diag(E), name="impliedCovs"),
    mxMatrix("Full", 
           name="thresholdDeviations", nrow=nThresholds, ncol=nOrdinalVariables,
           values=.2,
           free = useOptimizer, 
           lbound = rep( c(-Inf,rep(.01,(nThresholds-1))) , nOrdinalVariables),
           dimnames = list(c(), ordinalNames)),
    mxMatrix("Lower",nThresholds,nThresholds,values=1,free=F,name="unitLower"),
    mxAlgebra(unitLower %*% thresholdDeviations, name="thresholdMatrix"),
    mxAlgebra(impliedCovs[minCont:maxCont,minCont:maxCont], name="useCov"),
    mxAlgebra(M[1,minCont:maxCont], name="useM"),
    mxFitFunctionML(),mxExpectationNormal(covariance="useCov", means="useM", dimnames = continuousNames),
    mxData(observed=jointData, type='raw')
)
checkPermutations(contModel)

# Model spec for all ordinal case

ordModel <- mxModel("ordModel", 
    mxMatrix("Full", nVariables, nFactors, values=startLoads, free=startFree, lbound=-.99, ubound=.99, name="L"),
    mxMatrix("Unit", nVariables, 1, name="vectorofOnes"),
    mxMatrix("Zero", 1, nVariables, name="M"),
    mxAlgebra(vectorofOnes - (diag2vec(L %*% t(L))) , name="E"),
    mxAlgebra(L %*% t(L) + vec2diag(E), name="impliedCovs"),
    mxMatrix("Full", 
           name="thresholdDeviations", nrow=nThresholds, ncol=nOrdinalVariables,
           values=.2,
           free = useOptimizer, 
           lbound = rep( c(-Inf,rep(.01,(nThresholds-1))) , nOrdinalVariables),
           dimnames = list(c(), ordinalNames)),
    mxMatrix("Lower",nThresholds,nThresholds,values=1,free=F,name="unitLower"),
    mxAlgebra(unitLower %*% thresholdDeviations, name="thresholdMatrix"),
    mxAlgebra(impliedCovs[minOrd:maxOrd,minOrd:maxOrd], name="useCov"),
    mxAlgebra(M[1,minOrd:maxOrd], name="useM"),
    mxFitFunctionML(),mxExpectationNormal(covariance="useCov", means="useM", dimnames = ordinalNames, threshnames = ordinalNames[1:nOrdinalVariables], thresholds="thresholdMatrix"),
    mxData(observed=jointData, type='raw')
)
checkPermutations(ordModel)

# Model spec for joint independent factors case
independentModel <- mxModel("independentComboModel",
    mxMatrix("Full", nVariables, nFactors, values=startLoads, free=startFree, lbound=-.99, ubound=.99, name="L"),
    mxMatrix("Unit", nVariables, 1, name="vectorofOnes"),
    mxMatrix("Zero", 1, nVariables, name="M"),
    mxAlgebra(vectorofOnes - (diag2vec(L %*% t(L))) , name="E"),
    mxAlgebra(L %*% t(L) + vec2diag(E), name="impliedCovs"),
    mxMatrix("Full", 
           name="thresholdDeviations", nrow=nThresholds, ncol=nOrdinalVariables,
           values=.2,
           free = useOptimizer, 
           lbound = rep( c(-Inf,rep(.01,(nThresholds-1))) , nOrdinalVariables),
           dimnames = list(c(), ordinalNames)),
   mxMatrix("Lower",nThresholds,nThresholds,values=1,free=F,name="unitLower"),
   mxAlgebra(unitLower %*% thresholdDeviations, name="thresholdMatrix"),
   mxFitFunctionML(),mxExpectationNormal(covariance="impliedCovs", means="M", dimnames = jointNames, threshnames = ordinalNames[1:nOrdinalVariables], thresholds="thresholdMatrix"),
   mxData(observed=jointData, type='raw')
)
checkPermutations(independentModel)

# Second Simulation: Continuous and Ordinal Variables no longer uncorrelated.
# We no longer have separability, so we'll run all-ordinal and all-continuous
# variants of the same model.
# For this, the joint results should fall between the ordinal and the continuous.

# Step 1: Set parameters for second simulation
loadings <- matrix(.4, nrow=nVariables,ncol=nFactors)  # Now, all correlated
startLoads <- loadings
residuals <- 1 - diag(loadings %*% t(loadings))
sigma <- loadings %*% t(loadings) + vec2diag(residuals)

mu <- matrix(0,nrow=nVariables,ncol=1)

# Step 2: simulate multivariate normal data for second simulation
set.seed(1234)
continuousCrossData <- data.frame(matrix(mvtnorm::rmvnorm(n=nSubjects,mu,sigma), nrow=nSubjects, ncol=nVariables))

# Step 3: chop continuous variables into ordinal data 
# with nThresholds+1 approximately equal categories, based on 1st variable
quants<-quantile(continuousCrossData[,1],  probs = c((1:nThresholds)/(nThresholds+1)))
ordinalCrossData<-matrix(0,nrow=nSubjects,ncol=nVariables)
for(i in 1:nVariables)
{
ordinalCrossData[,i] <- cut(as.vector(continuousCrossData[,i]),c(-Inf,quants,Inf))
}

# Step 4: make the ordinal variables into R factors and make a joint data frame with both variables in it, innit?
ordinalCrossData <- mxFactor(as.data.frame(ordinalCrossData),levels=c(1:(nThresholds+1)))
jointCrossData <- data.frame(continuousCrossData[,(nOrdinalVariables+1):nVariables],
	ordinalCrossData[,1:nOrdinalVariables])

names(jointCrossData) <- jointNames
names(continuousCrossData) <- jointNames
names(ordinalCrossData) <- jointNames

# Step 5: Set up actual models, simulation 2

# Ordinal-only model

thresholdModel <- mxModel("thresholdModel",
    mxMatrix("Full", nVariables, nFactors, values=startLoads, free=startFree, lbound=-.99, ubound=.99, name="L"),
    mxMatrix("Unit", nVariables, 1, name="vectorofOnes"),
    mxMatrix("Zero", 1, nVariables, name="M"),
    mxAlgebra(vectorofOnes - (diag2vec(L %*% t(L))) , name="E"),
    mxAlgebra(L %*% t(L) + vec2diag(E), name="impliedCovs"),
    mxMatrix("Full",
           name="thresholdDeviations", nrow=nThresholds, ncol=nVariables,
           values=.2,
           free = useOptimizer, 
           lbound = rep( c(-Inf,rep(.01,(nThresholds-1))) , nVariables),
           dimnames = list(c(), jointNames)),
    mxMatrix("Lower",nThresholds,nThresholds,values=1,free=F,name="unitLower"),
    mxAlgebra(unitLower %*% thresholdDeviations, name="thresholdMatrix"),
    mxFitFunctionML(),mxExpectationNormal(covariance="impliedCovs", means="M", dimnames = jointNames, thresholds="thresholdMatrix"),
           mxData(observed=ordinalCrossData, type='raw')
)

continuousModel <- mxModel("continuousModel",
    mxMatrix("Full", nVariables, nFactors, values=startLoads, free=startFree, lbound=-.99, ubound=.99, name="L"),
    mxMatrix("Unit", nVariables, 1, name="vectorofOnes"),
    mxMatrix("Zero", 1, nVariables, name="M"),
    mxAlgebra(vectorofOnes - (diag2vec(L %*% t(L))) , name="E"),
    mxAlgebra(L %*% t(L) + vec2diag(E), name="impliedCovs"),
    mxMatrix("Full", 
           name="thresholdDeviations", nrow=nThresholds, ncol=nVariables,
           values=.2,
           free = useOptimizer, 
           lbound = rep( c(-Inf,rep(.01,(nThresholds-1))) , nVariables),
           dimnames = list(c(), jointNames)),
    mxMatrix("Lower",nThresholds,nThresholds,values=1,free=F,name="unitLower"),
    mxAlgebra(unitLower %*% thresholdDeviations, name="thresholdMatrix"),
    mxFitFunctionML(),mxExpectationNormal(covariance="impliedCovs", means="M", dimnames = jointNames),
    mxData(observed=continuousCrossData, type='raw')
)

jointModel <- mxModel("jointModel",
    mxMatrix("Full", nVariables, nFactors, values=startLoads, free=startFree, lbound=-.99, ubound=.99, name="L"),
    mxMatrix("Unit", nVariables, 1, name="vectorofOnes"),
    mxMatrix("Zero", 1, nVariables, name="M"),
    mxAlgebra(vectorofOnes - (diag2vec(L %*% t(L))) , name="E"),
    mxAlgebra(L %*% t(L) + vec2diag(E), name="impliedCovs"),
    mxMatrix("Full", 
           name="thresholdDeviations", nrow=nThresholds, ncol=nOrdinalVariables,
           values=.2,
           free = useOptimizer, 
           lbound = rep( c(-Inf,rep(.01,(nThresholds-1))) , nOrdinalVariables),
           dimnames = list(c(), ordinalNames)),
   mxMatrix("Lower",nThresholds,nThresholds,values=1,free=F,name="unitLower"),
   mxAlgebra(unitLower %*% thresholdDeviations, name="thresholdMatrix"),
           mxFitFunctionML(),mxExpectationNormal(covariance="impliedCovs", means="M", dimnames = jointNames, threshnames = ordinalNames[1:nOrdinalVariables], thresholds="thresholdMatrix"),
           mxData(observed=jointCrossData, type='raw')
)

# Step 11: Set model options for speed

thresholdModel  <- mxOption(thresholdModel,  "Calculate Hessian", "No")
continuousModel <- mxOption(continuousModel, "Calculate Hessian", "No")
jointModel      <- mxOption(jointModel,      "Calculate Hessian", "No")
independentModel<- mxOption(independentModel,"Calculate Hessian", "No")
ordModel        <- mxOption(ordModel,        "Calculate Hessian", "No")
contModel       <- mxOption(contModel,       "Calculate Hessian", "No")
thresholdModel  <- mxOption(thresholdModel,  "Standard Errors", "No")
continuousModel <- mxOption(continuousModel, "Standard Errors", "No")
jointModel      <- mxOption(jointModel,      "Standard Errors", "No")
independentModel<- mxOption(independentModel,"Standard Errors", "No")
ordModel        <- mxOption(ordModel,        "Standard Errors", "No")
contModel       <- mxOption(contModel,       "Standard Errors", "No")

# Step 12: Run 'em.
thresholdModelRun <- mxRun(thresholdModel, suppressWarnings=TRUE)
continuousModelRun <- mxRun(continuousModel, suppressWarnings=TRUE)
jointModelRun <- mxRun(jointModel, suppressWarnings=TRUE)

ordinal    <- summary(thresholdModelRun)$Minus2LogLikelihood
continuous <- summary(continuousModelRun)$Minus2LogLikelihood
joint      <- summary(jointModelRun)$Minus2LogLikelihood

ord <- summary(mxRun(ordModel, suppressWarnings=TRUE))$Minus2LogLikelihood
cont <- summary(mxRun(contModel, suppressWarnings=TRUE))$Minus2LogLikelihood
indepJoint <- summary(mxRun(independentModel, suppressWarnings=TRUE))$Minus2LogLikelihood

# Second simulation set: 2 correlated continuous, one NA ordinal

useOptimizer <- TRUE

nSubjects <- 200
nThresh <- 1

cov1 <- matrix( c(2, .7, 0,
                 .7,  3, 0,
                  0,  0, 1), 3, 3)
start1 <- c(2, .7, 0, 3, 0, 1)
mu1 <-  c(15, -6, 0)
cNames1 <- c("C1", "C2", "Ona")
oNames1 <- c("O1", "O2", "Cna")

nVars <- dim(cov1)[1]
# Continuous and Ordinal vs joint: Continuous and ordinal data with an NA column of the other type
#   Comparison condition is to an NA column of the same type--with missingness, it's
#   all the same to the math.
set.seed(1234)
continuousData1 <- data.frame(matrix(mvtnorm::rmvnorm(n=nSubjects,mu1,cov1), nrow=nSubjects, ncol=nVars))
continuousData1[,nVars] <- as.numeric(NA)
names(continuousData1) <- cNames1



contModel1 <- mxModel("contModel1", 
    mxData(continuousData1, type="raw"),
    mxMatrix("Symm", nVars, nVars, values=start1, free=useOptimizer, name="Cov"),
    mxMatrix("Full", 1, nVars, values=rep(0, nVars), free=useOptimizer, name="Mean"),
    mxMatrix("Full", 1, 1, values=c(0), free=FALSE, name="Thresh"),
    mxFitFunctionML(),mxExpectationNormal(covariance="Cov", means="Mean", dimnames=cNames1)
)

contModel1A <- mxModel("contModel1A", 
    mxData(continuousData1, type="raw"),
    mxMatrix("Symm", nVars, nVars, values=start1, free=useOptimizer, name="Cov"),
    mxMatrix("Full", 1, nVars, values=rep(0, nVars), free=useOptimizer, name="Mean"),
    mxFitFunctionML(),mxExpectationNormal(covariance="Cov", means="Mean", dimnames=cNames1)
)

contModel1 <- mxOption(contModel1, "Function precision", 1e-9)
contModel1A <- mxOption(contModel1A, "Function precision", 1e-9)
contModel1 <- mxOption(contModel1, "Calculate Hessian", "No")
contModel1A <- mxOption(contModel1A, "Calculate Hessian", "No")
contModel1 <- mxOption(contModel1, "Standard Errors", "No")
contModel1A <- mxOption(contModel1A, "Standard Errors", "No")

contFit1 <- mxRun(contModel1, suppressWarnings=TRUE)
contFit1A <- mxRun(contModel1A, suppressWarnings=TRUE)
contSum1 <- summary(contFit1)
contSum1A <- summary(contFit1A)

ordinalData1 <- data.frame(matrix(mvtnorm::rmvnorm(n=nSubjects,mu1,cov1), nrow=nSubjects, ncol=nVars))
quants <- quantile(ordinalData1[,1],  probs = c((1:nThresh)/(nThresh+1)))
for(i in 1:nVars) {
   ordinalData1[,i] <- cut(as.vector(ordinalData1[,i]),c(-Inf,quants,Inf), labels=c(0:nThresh))
}
ordinalData1 <- mxFactor(ordinalData1, levels=c(0:nThresh))
ordinalData1[,nVars] <- mxFactor(NA, levels=1:2)
names(ordinalData1) <- oNames1
str(ordinalData1)

ordModel1 <- mxModel("ordModel1", 
    mxData(ordinalData1, type="raw"),
    mxMatrix("Symm", nVars, nVars, values=start1, free=useOptimizer, name="Cov"),
    mxMatrix("Full", 1, nVars, values=rep(0, nVars), free=useOptimizer, name="Mean"),
    mxMatrix("Full", nThresh, nVars, values=seq(-1, 1, length.out=nThresh), free=FALSE, name="Thresh"),
    mxFitFunctionML(),mxExpectationNormal(covariance="Cov", means="Mean", dimnames=oNames1, thresholds="Thresh", threshnames=oNames1)
)
ordinalData1[,nVars] <- as.numeric(NA)
ordModel1A <- mxModel("ordModel1A", 
    mxData(ordinalData1, type="raw"),
    mxMatrix("Symm", nVars, nVars, values=start1, free=useOptimizer, name="Cov"),
    mxMatrix("Full", 1, nVars, values=rep(0, nVars), free=useOptimizer, name="Mean"),
    mxMatrix("Full", nThresh, nVars-1, values=seq(-1, 1, length.out=nThresh), free=FALSE, name="Thresh"),
    mxFitFunctionML(),
    mxExpectationNormal(covariance="Cov", means="Mean", dimnames = oNames1, thresholds="Thresh", threshnames=oNames1[1:(nVars-1)])
)

ordModel1 <- mxOption(ordModel1, "Function precision", 1e-9)
ordModel1A <- mxOption(ordModel1A, "Function precision", 1e-9)
ordModel1 <- mxOption(ordModel1, "Calculate Hessian", "No")
ordModel1A <- mxOption(ordModel1A, "Calculate Hessian", "No")
ordModel1 <- mxOption(ordModel1, "Standard Errors", "No")
ordModel1A <- mxOption(ordModel1A, "Standard Errors", "No")

ordFit1 <- mxRun(ordModel1, suppressWarnings=TRUE)
ordFit1A <- mxRun(ordModel1A, suppressWarnings=TRUE)
ordSum1 <- summary(ordFit1)
ordSum1A <- summary(ordFit1A)


# Second simulation: Same conditions as above, combined into a single model of two uncorrelated systems.
#   estimates should be identical.

nOrd <- 2
nCont <- 2
nVars <- nOrd + nCont
cov2 <- matrix(c(3, .7, 0, 0,
                 .7, 3, 0, 0,
                 0, 0, 1, -.7,
                 0, 0, -.7, 5), nVars,nVars)
mu2 <- c(5, 10, 0, 0)
startCont2 <- c(2, .7, 3)
startOrd2 <- c(1, .5, 1)
startAll2 <- c(1, .5, 0, 0, 1, 0, 0, 1, .5, 1)
startMeans2 <-c(0, 0, 0, 0)
allContinuousData2 <- data.frame(matrix(mvtnorm::rmvnorm(n=nSubjects,mu2,cov2), nrow=nSubjects, ncol=nVars))
continuousData2 <- allContinuousData2[,1:nCont]
ordinalData2 <- allContinuousData2[,(1:nOrd) + nCont]
quants <- quantile(ordinalData2[,1],  probs = c((1:nThresh)/(nThresh+1)))
for(i in 1:nOrd) {
   ordinalData2[,i] <- mxFactor(cut(as.vector(ordinalData2[,i]),c(-Inf,quants,Inf), labels=c(0:nThresh)), levels=0:nThresh)
}

cNames2 <- paste("C", 1:nCont, sep="")
oNames2 <- paste("O", 1:nOrd, sep="")
allNames2 <- c(cNames2, oNames2)
allData2 <- data.frame(continuousData2, ordinalData2)
names(continuousData2) <- cNames2
names(ordinalData2) <- oNames2
names(allData2) <- allNames2
contBound2 <- matrix(NA, nCont, nCont)
diag(contBound2) <- .01
ordBound2 <- matrix(NA, nOrd, nOrd)
diag(ordBound2) <- .01
allBound2 <- cbind(rbind(contBound2, matrix(NA, nOrd, nCont)), rbind(matrix(NA, nCont, nOrd), ordBound2))


contModel2 <- mxModel("contModel2", 
    mxData(continuousData2, type="raw"),
    mxMatrix("Symm", nCont, nCont, values=startCont2, free=useOptimizer, lbound=contBound2, name="Cov"),
    mxMatrix("Full", 1, nCont, values=startMeans2[1:nCont], free=useOptimizer, name="Mean"),
    mxFitFunctionML(),
    mxExpectationNormal(covariance="Cov", means="Mean", dimnames = cNames2)
    )

ordModel2 <-     mxModel("ordModel2", 
    mxData(ordinalData2, type="raw"),
    mxMatrix("Symm", nOrd, nOrd, values=startOrd2, free=useOptimizer, lbound=ordBound2, name="Cov"),
    mxMatrix("Full", 1, nCont, values=startMeans2[1:nOrd + nCont], free=useOptimizer, name="Mean"),
    mxMatrix("Full", nThresh, nOrd, values=seq(-1, 1, length.out=nThresh), free=FALSE, name="Thresh"),
    mxFitFunctionML(),
    mxExpectationNormal(covariance="Cov", means="Mean", dimnames = oNames2, thresholds="Thresh")
    )

allModel2 <- mxModel("jointModel2", 
    mxData(allData2, type="raw"),
    mxMatrix("Symm", nVars, nVars, values=startAll2, free=as.logical(useOptimizer * startAll2), lbound=allBound2, name="Cov"),
    mxMatrix("Full", 1, nVars, values=startMeans2[1:nOrd + nCont], free=useOptimizer, name="Mean"),
    mxMatrix("Full", nThresh, nOrd, values=seq(-1, 1, length.out=nThresh), free=FALSE, name="Thresh"),
    mxFitFunctionML(),
    mxExpectationNormal(covariance="Cov", means="Mean", dimnames = allNames2, thresholds="Thresh", threshnames = oNames2)
    )
    
dubData2 <- rbind(allData2, allData2)

dubModel2 <- mxModel("jointModel2Double", 
    mxData(dubData2, type="raw"),
    mxMatrix("Symm", nVars, nVars, values=startAll2, free=as.logical(useOptimizer * startAll2), lbound=allBound2, name="Cov"),
    mxMatrix("Full", 1, nVars, values=startMeans2[1:nOrd + nCont], free=useOptimizer, name="Mean"),
    mxMatrix("Full", nThresh, nOrd, values=seq(-1, 1, length.out=nThresh), free=FALSE, name="Thresh"),
    mxFitFunctionML(),mxExpectationNormal(covariance="Cov", means="Mean", dimnames = allNames2, thresholds="Thresh", threshnames = oNames2)
    )


contModel2 <- mxOption(contModel2, "Function precision", 1e-9)
ordModel2 <- mxOption(ordModel2, "Function precision", 1e-9)
allModel2 <- mxOption(allModel2, "Function precision", 1e-9)
dubModel2 <- mxOption(dubModel2, "Function precision", 1e-9)

contModel2 <- mxOption(contModel2, "Calculate Hessian", "No")
ordModel2 <- mxOption(ordModel2, "Calculate Hessian", "No")
allModel2 <- mxOption(allModel2, "Calculate Hessian", "No")
dubModel2 <- mxOption(dubModel2, "Calculate Hessian", "No")

contModel2 <- mxOption(contModel2, "Standard Errors", "No")
ordModel2 <- mxOption(ordModel2, "Standard Errors", "No")
allModel2 <- mxOption(allModel2, "Standard Errors", "No")
dubModel2 <- mxOption(dubModel2, "Standard Errors", "No")

contFit2 <- mxRun(contModel2, suppressWarnings=TRUE)
ordFit2  <- mxRun(ordModel2, suppressWarnings=TRUE)
allFit2  <- mxRun(allModel2, suppressWarnings=TRUE)
dubFit2  <- mxRun(dubModel2, suppressWarnings=TRUE)

contSum2 <- summary(contFit2)
ordSum2  <- summary(ordFit2)
allSum2  <- summary(allFit2)
dubSum2  <- summary(dubFit2)

# Second simulation: The same conditions from above, with correlations freed between.
#   Need correct values to make a solid check
# 
# nOrd <- 2
# nCont <- 2
# nVars <- nOrd + nCont
# cov3 <- matrix(c(3, .7, .8, -.2,
#                  .7, 3, .6, -.4,
#                  .8, .6, 1, -.7,
#                  -.2, -.4, -.7, 5), nVars,nVars)
# mu3 <- c(5, 10, 0, 0)
# startAll3 <- c(1, .5, .5, .5, 1, .5, .5, 1, .5, 1)
# startMeans3 <-c(0, 0, 0, 0)
# allContinuousData3 <- data.frame(matrix(mvtnorm::rmvnorm(n=nSubjects,mu3,cov3), nrow=nSubjects, ncol=nVars))
# continuousData3 <- allContinuousData3[,1:nCont]
# ordinalData3 <- allContinuousData3[,(1:nOrd) + nCont]
# quants <- quantile(ordinalData3[,1],  probs = c((1:nThresh)/(nThresh+1)))
# for(i in 1:nOrd) {
#    ordinalData3[,i] <- mxFactor(cut(as.vector(ordinalData3[,i]),c(-Inf,quants,Inf), labels=c(0:nThresh)), levels=0:nThresh)
# }
# 
# cNames3 <- paste("C", 1:nCont, sep="")
# oNames3 <- paste("O", 1:nOrd, sep="")
# allNames3 <- c(cNames3, oNames3)
# allData3 <- data.frame(continuousData3, ordinalData3)
# names(allData3) <- allNames3
# contBound3 <- matrix(NA, nCont, nCont)
# diag(contBound3) <- .01
# ordBound3 <- matrix(NA, nOrd, nOrd)
# diag(ordBound3) <- .01
# allBound3 <- cbind(rbind(contBound3, matrix(NA, nOrd, nCont)), rbind(matrix(NA, nCont, nOrd), ordBound3))
# 
# allModel3 <- mxModel("jointModel3", 
#     mxData(allData3, type="raw"),
#     mxMatrix("Symm", nVars, nVars, values=startAll3, free=as.logical(useOptimizer * startAll3), lbound=allBound3, name="Cov"),
#     mxMatrix("Full", 1, nVars, values=startMeans3[1:nOrd + nCont], free=useOptimizer, name="Mean"),
#     mxMatrix("Full", nThresh, nOrd, values=seq(-1, 1, length.out=nThresh), free=FALSE, name="Thresh"),
#     mxFitFunctionML(),mxExpectationNormal(covariance="Cov", means="Mean", dimnames = allNames3, thresholds="Thresh", threshnames = oNames3)
#     )
# 
# allModel3 <- mxOption(allModel3, "Function precision", 1e-9)
# allModel3 <- mxOption(allModel3, "Calculate Hessian", "No")
# 
# allFit3 <- mxRun(allModel3, suppressWarnings=TRUE)
# allSum3 <- summary(allFit3)

omxCheckCloseEnough(contSum1$Minus2LogLikelihood, contSum1A$Minus2LogLikelihood, .0000001)
omxCheckCloseEnough(ordSum1$Minus2LogLikelihood, ordSum1A$Minus2LogLikelihood, .0000001)
omxCheckCloseEnough(contSum2$Minus2LogLikelihood + ordSum2$Minus2LogLikelihood, allSum2$Minus2LogLikelihood, .01)
omxCheckCloseEnough(2* allSum2$Minus2LogLikelihood, dubSum2$Minus2LogLikelihood, .01)

# Step 13: Tests

# Isbetween will be negative if the signs don't match; that is, if joint is not between
isbetween <- sign(ordinal - joint) * sign(joint - continuous)

omxCheckEquals(isbetween, 1)
omxCheckCloseEnough(indepJoint, ord+cont, .000001)