1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
#
# Copyright 2007-2019 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#------------------------------------------------------------------------------
# Author: Michael D. Hunter
# Date: 2011.09.22
# Filename: LISRELFactorRegression_Matrix.R
# Purpose: Create a test for the mxExpectationLISREL function. The LISREL
# objective is still under active development and probably has some memory
# leaks, but this models estimates correctly and is much fast/easier than the
# RObjective implementation: demo/RObjectiveLISRELFactorRegression.R
#------------------------------------------------------------------------------
# Revision History:
# Thu Sep 22 20:56:35 Central Daylight Time 2011 -- Michael Hunter created file
# Mon Mar 05 08:41:32 Central Standard Time 2012 -- Michael Hunter added comparison to published estimated parameters
# Tue Mar 06 12:52:01 Central Standard Time 2012 -- Michael Hunter added OpenMx copyright and moved from models/failing to models/passing and renamed from LISRELObjectiveTest_Matrix.R to LISRELFactorRegression_Matrix.R
# Fri Mar 30 03:10:06 Central Daylight Time 2012 -- Michael Hunter added dimnames to observed data
# Sat Apr 07 20:06:13 Central Daylight Time 2012 -- Michael Hunter added dimnames to factor loading matrices
#
#------------------------------------------------------------------------------
# Define the data to be fit
obsCor <- matrix(c(
1.00, 0.43, 0.52, 0.54, 0.83,
0.43, 1.00, 0.67, 0.45, 0.45,
0.52, 0.67, 1.00, 0.63, 0.56,
0.54, 0.45, 0.63, 1.00, 0.52,
0.83, 0.45, 0.56, 0.52, 1.00),
nrow=5, ncol=5, byrow=TRUE
)
# Define the exogenous and endogenous variables
endInd <- c(1, 5) #Indexes of the endogenous/dependent variables
exoInd <- c(2:4) #Indexes of the exogenous/independent variables
# Correlation matrix rearranged into separate blocks of
# endogenous and exogenous variables
gObsCor <- cbind(rbind(obsCor[endInd, endInd], obsCor[exoInd, endInd]), rbind(obsCor[endInd, exoInd], obsCor[exoInd, exoInd]) )
rownames(gObsCor) <- c(paste('y', 1:length(endInd), sep=''), paste('x', 1:length(exoInd), sep='') )
colnames(gObsCor) <- rownames(gObsCor)
#------------------------------------------------------------------------------
# Specify the model
require(OpenMx)
numManExo <- length(exoInd)
numManEnd <- length(endInd)
numLatExo <- 1
numLatEnd <- 2
manExoNam <- paste('x', 1:numManExo, sep='')
manEndNam <- paste('y', 1:numManEnd, sep='')
latExoNam <- paste('xi', 1:numLatExo, sep='')
latEndNam <- paste('eta', 1:numLatEnd, sep='')
# Specify the nine LISREL matrices, no model for means
lx <- mxMatrix(
name='LX',
nrow=numManExo,
ncol=numLatExo,
free=T,
values=c(.8, .8, .8),
labels=c('lam1', 'lam2', 'lam3'),
dimnames=list(manExoNam, latExoNam)
)
ly <- mxMatrix(
name='LY',
type='Iden',
free=F,
nrow=numManEnd,
ncol=numLatEnd,
dimnames=list(manEndNam, latEndNam)
)
be <- mxMatrix(
name='BE',
nrow=numLatEnd,
ncol=numLatEnd,
free=c(F, T, F, F),
values=c(0, .8, 0, 0),
labels=c(NA, 'bet', NA, NA)
)
ga <- mxMatrix(
name='GA',
nrow=numLatEnd,
ncol=numLatExo,
free=T,
values=c(.8, 1.8),
labels=c('gam1', 'gam2')
)
ps <- mxMatrix(
name='PS',
nrow=numLatEnd,
ncol=numLatEnd,
free=c(T, F, F, T),
values=c(.8, 0, 0, 1.8),
labels=c('zet1sq', NA, NA, 'zet2sq')
)
ph <- mxMatrix(
name='PH',
nrow=numLatExo,
ncol=numLatExo,
free=F,
values=1
)
te <- mxMatrix(
name='TE',
nrow=numManEnd,
ncol=numManEnd,
free=F,
values=0
)
td <- mxMatrix(
name='TD',
type='Symm',
nrow=numManExo,
ncol=numManExo,
free=c(T, F, T, F, T, F, T, F, T),
values=c(.8, 0, .1, 0, .8, 0, .1, 0, .8),
labels=c('del1', NA, 'del13', NA, 'del2', NA, 'del13', NA, 'del3')
)
th <- mxMatrix(
name='TH',
nrow=numManExo,
ncol=numManEnd,
free=F,
values=0
)
Jor82Ex1 <- mxModel(
name='LISREL Test from 1982 Paper with mxExpectationLISREL',
mxData(observed=gObsCor, type='cor', numObs=1000),
lx, ly, be, ga, ph, ps, td, te, th,
mxExpectationLISREL(LX=lx$name, LY=ly$name, BE=be$name, GA=ga$name, PH=ph$name, PS=ps$name, TD=td$name, TE=te$name, TH=th$name),
mxFitFunctionML()
)
#------------------------------------------------------------------------------
# Fit the model
# Uncomment the following lines when debugbing
#ex1Run <- mxRun(Jor82Ex1, onlyFrontend=TRUE) # This runs fine.
#Jor82Ex1 <- mxOption(Jor82Ex1, "Calculate Hessian", "No")
#Jor82Ex1 <- mxOption(Jor82Ex1, "Standard Errors", "No")
#Jor82Ex1 <- mxOption(Jor82Ex1, "Major iterations", 0)
ex1Run <- mxRun(Jor82Ex1)
summary(ex1Run)
#--------------------------------------------------------------------
# Check for errors/warnings
omxCheckWarning(mxGetExpected(ex1Run, 'means'), "Means requested, but model has no means.\nAdd appropriate TX, TY, KA, and/or AL matrices to get real means.")
#------------------------------------------------------------------------------
# Published Results
TDp <- matrix(c(0.64, 0, -0.31, 0, 0.52, 0, -0.31, 0, 0.65), nrow=3, ncol=3)
LXp <- matrix(c(0.76, 0.85, 0.76), nrow=3, ncol=1)
GAp <- matrix(c(0.63, 0.21), nrow=2, ncol=1)
BEp <- matrix(c(0, 0.70, 0, 0), nrow=2, ncol=2)
PSp <- diag(c(0.78, 0.53))
#------------------------------------------------------------------------------
# Fitted Results
# Covariance matrices were scaled as correlation matrices
# with the standard deviations down the diagonal
PSf <- cov2cor(ex1Run$PS$values)
diag(PSf) <- sqrt(diag(ex1Run$PS$values))
TDf <- cov2cor(ex1Run$TD$values)
diag(TDf) <- sqrt(diag(ex1Run$TD$values))
# The other matrices are reported raw.
LXf <- ex1Run$LX$values
GAf <- ex1Run$GA$values
BEf <- ex1Run$BE$values
#------------------------------------------------------------------------------
# Compare Fitted and Published Results
# Note: Because the published paper only reports
# two decimals of precision, the comparison can only
# be made down to two decimal places (i.e. epsilon=0.01)
omxCheckCloseEnough(TDf, TDp, epsilon=0.01)
omxCheckCloseEnough(LXf, LXp, epsilon=0.01)
omxCheckCloseEnough(GAf, GAp, epsilon=0.01)
omxCheckCloseEnough(BEf, BEp, epsilon=0.01)
omxCheckCloseEnough(PSf, PSp, epsilon=0.01)
#------------------------------------------------------------------------------
# End
|