File: ModelRemovePaths.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (157 lines) | stat: -rw-r--r-- 5,404 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#
#   Copyright 2007-2018 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.


# -----------------------------------------------------------------------
# Program: TwoFactorModel_PathCov.R  
#  Author: Ryne Estabrook
#    Date: 08 01 2009 
#
# Two Factor model to estimate factor loadings, residual variances and means
# Path style model input - Covariance matrix data input
#
# Revision History
#   Hermine Maes -- 10 08 2009 updated & reformatted
# -----------------------------------------------------------------------

require(OpenMx)

#Prepare Data
# -----------------------------------------------------------------------
myFADataCov <- matrix(
      c(0.997, 0.642, 0.611, 0.672, 0.637, 0.677, 0.342, 0.299, 0.337,
        0.642, 1.025, 0.608, 0.668, 0.643, 0.676, 0.273, 0.282, 0.287,
        0.611, 0.608, 0.984, 0.633, 0.657, 0.626, 0.286, 0.287, 0.264,
        0.672, 0.668, 0.633, 1.003, 0.676, 0.665, 0.330, 0.290, 0.274,
        0.637, 0.643, 0.657, 0.676, 1.028, 0.654, 0.328, 0.317, 0.331,
        0.677, 0.676, 0.626, 0.665, 0.654, 1.020, 0.323, 0.341, 0.349,
        0.342, 0.273, 0.286, 0.330, 0.328, 0.323, 0.993, 0.472, 0.467,
        0.299, 0.282, 0.287, 0.290, 0.317, 0.341, 0.472, 0.978, 0.507,
        0.337, 0.287, 0.264, 0.274, 0.331, 0.349, 0.467, 0.507, 1.059),
      nrow=9,
      dimnames=list(
          c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3"),
          c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3")),
)

twoFactorCov <- myFADataCov[c("x1","x2","x3","y1","y2","y3"),c("x1","x2","x3","y1","y2","y3")]
  
myFADataMeans <- c(2.988, 3.011, 2.986, 3.053, 3.016, 3.010, 2.955, 2.956, 2.967)
names(myFADataMeans) <- c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3")
  
twoFactorMeans <- myFADataMeans[c(1:3,7:9)]

#Create an MxModel object
# -----------------------------------------------------------------------
twoFactorModel <- mxModel("Two Factor Model Path", type="RAM",
    mxData(
    	observed=twoFactorCov, 
    	type="cov", 
    	numObs=500, 
    	means=twoFactorMeans
    ),
    manifestVars=c("x1", "x2", "x3", "y1", "y2", "y3"),
    latentVars=c("F1","F2"),
    # residual variances
    mxPath(
    	from=c("x1", "x2", "x3", "y1", "y2", "y3"),
        arrows=2, 
        free=TRUE, 
        values=1,
        labels=c("e1","e2","e3","e4","e5","e6")
    ),
    # latent variances and covaraince
    mxPath(
    	from=c("F1","F2"),
        arrows=2,
#        all=TRUE, 
        connect="unique.pairs",
        free=TRUE,
        values=c(1, .5, 1),
        labels=c("varF1", "cov", "varF2")
    ), 
    # factor loadings for x variables
    mxPath(
    	from="F1",
        to=c("x1","x2","x3"),
        arrows=1,
        free=c(FALSE,TRUE,TRUE),
        values=c(1,1,1),
        labels=c("l1","l2","l3")
    ),
    # factor loadings for y variables
    mxPath(
    	from="F2",
        to=c("y1","y2","y3"),
        arrows=1,
        free=c(FALSE,TRUE,TRUE),
        values=c(1,1,1),
        labels=c("l4","l5","l6")
    ),
    # means
    mxPath(
    	from="one",
        to=c("x1","x2","x3","y1","y2","y3","F1","F2"),
        arrows=1,
        free=c(T ,T, T, T, T, T, F, F),
        values=c(1,1,1,1,1,1,0,0),
        labels=c("meanx1","meanx2","meanx3","meany1","meany2","meany3",NA,NA)
    )
) # close model

omxCheckError(twoFactorModel$intervals <- NULL,
              "I'm very sorry, but direct modification of objects inside an mxModel is not supported.  The recommended approach to modifying an mxMatrix, mxAlgebra or other object within a model is to rebuild the mxModel.  So, for example, 'model <- mxModel(model, Something)' can be used to replace Something inside the model, instead of 'model$Something <- Something' which does not work")

elimination <- twoFactorModel

elimination <- mxModel(elimination, remove = TRUE,
 	mxPath(
        from=c("x1", "x2", "x3", "y1", "y2", "y3"),
		arrows=2
    ),
    mxPath(
        from=c("F1","F2"),
        arrows=2,
#        all=TRUE
        connect="unique.pairs"
    ),
	mxPath(
        from="F1",
        to=c("x1","x2","x3"),
        arrows=1
    ),
    mxPath(
        from="F2",
        to=c("y1","y2","y3"),
        arrows=1
    ),
    # means
    mxPath(
        from="one",
        to=c("x1","x2","x3","y1","y2","y3","F1","F2")
    )
)

omxCheckIdentical(c(elimination$A$values), rep(0, 8*8))
omxCheckIdentical(c(elimination$A$free), rep(FALSE, 8*8))
omxCheckIdentical(c(elimination$A$labels), rep(as.character(NA), 8* 8))

omxCheckIdentical(c(elimination$S$values), rep(0, 8 * 8))
omxCheckIdentical(c(elimination$S$free), rep(FALSE, 8 * 8))
omxCheckIdentical(c(elimination$S$labels), rep(as.character(NA), 8 * 8))

omxCheckIdentical(c(elimination$M$values), rep(0, 8))
omxCheckIdentical(c(elimination$M$free), rep(FALSE, 8))
omxCheckIdentical(c(elimination$M$labels), rep(as.character(NA), 8))