1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
#
# Copyright 2007-2018 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
require(OpenMx)
require(nlme)
# Multilevel Long Format Test
# Author: Steve Boker
# Date: Sun Nov 29 14:06:07 EST 2009
# This script is used to test the multilevel long format
# functionality using definition variables as indices.
totalOccasions <- 100
totalSubjects <- 10L
set.seed(42) # repeatibility
tID <- rep(1:totalSubjects, each=totalOccasions)
trueX <- rep(rnorm(totalOccasions, mean=0, sd=2), each=totalSubjects) +
rnorm(totalOccasions*totalSubjects, mean=0, sd=.2)
trueB <- rep(rnorm(totalSubjects, mean=.8, sd=.3), each=totalOccasions)
tDataFrame <- data.frame(
ID=tID, X=trueX, Y=trueB*trueX +
rnorm(totalOccasions*totalSubjects,mean=0, sd=.1),trueB=trueB)
summary(tDataFrame)
manifestVars <- c("X", "Y")
numSubjects <- length(unique(tDataFrame$ID))
# Estimates the sum of the random and fixed effects
multilevelModel2 <- mxModel("Multilevel_2",
mxMatrix("Full", nrow=numSubjects, ncol=2,
values=c(.2,0),
free=c(TRUE, TRUE),
name="Rand",
byrow=TRUE
),
mxMatrix("Full", 2, 2,
labels=c(NA, NA,
"randrow[1,1]", NA),
free=FALSE,
name="A",
byrow=TRUE
),
mxMatrix("Symm", 2, 2,
values=c(.9,0,.9),
free=c(T,
F, T),
labels=c("varX",
NA, "varY"),
name="S",
byrow=TRUE
),
mxMatrix("Full", 2, 2,
values=c(1,0,
0,1),
free=FALSE,
byrow=TRUE, name="F"),
mxMatrix("Iden", 2, name="I"),
mxAlgebra(F %*% solve(I-A) %*% S %*% t(solve(I-A)) %*% t(F),
name="R",
dimnames = list(manifestVars, manifestVars)
),
mxMatrix("Full", nrow=1, ncol=length(manifestVars),
values=0,
free=FALSE,
labels=c(NA,"randrow[1,2]"),
dimnames=list(NULL, manifestVars),
name="M"
),
mxAlgebra(Rand[data.ID,], name="randrow"),
mxFitFunctionML(),mxExpectationNormal(covariance="R", means="M"),
mxData(tDataFrame, type="raw")
)
# ----------------------------------
# Fit the model and examine the summary results.
multilevelModel2Fit <- mxRun(multilevelModel2)
summary(multilevelModel2Fit)
lmeOut <- lme(Y~X, random= ~ X | ID, data=tDataFrame)
cbind(multilevelModel2Fit$output$estimate[1:numSubjects],
lmeOut$coef$random$ID[,2] + lmeOut$coef$fixed[2],
trueB[seq(1,totalOccasions*(totalSubjects), by=totalOccasions)])
mean(multilevelModel2Fit$output$estimate[1:numSubjects])
est <- multilevelModel2Fit$output$estimate
omxCheckCloseEnough(mean(est[1:numSubjects]),
lmeOut$coef$fixed[2], 0.001)
omxCheckCloseEnough(mean(est[(1:numSubjects) + (1*numSubjects)]),
lmeOut$coef$fixed[1], 0.001)
# ----------------------------------
# An OpenMx equivalent to the mixed model
perID <- mxModel(
"perID", type="RAM", latentVars=c('int', 'slope'),
mxData(data.frame(ID=1L:totalSubjects), "raw", primaryKey="ID"),
mxPath(c('int', 'slope'),c('int', 'slope'),'unique.pairs',
arrows=2,values=c(1,0,1)))
occa <- mxModel(
"occa", type="RAM", perID, manifestVars="Y", latentVars="lX",
mxData(tDataFrame, 'raw'),
mxPath('Y', arrows=2, values=1),
mxPath('one', 'Y'),
mxPath('one', 'lX', labels='data.X', free=FALSE),
mxPath('lX', 'Y'),
mxPath('perID.int', 'Y', values=1, free=FALSE, joinKey='ID'),
mxPath('perID.slope', 'Y', labels='data.X', free=FALSE, joinKey='ID'))
if (0) {
require(lme4)
lmer1 <- lmer(Y~X + (X | ID), data=tDataFrame, REML=FALSE)
pt1 <- occa
#pt1$perID$cholS$values[,] <- chol(VarCorr(lmer1)$ID)
pt1$perID$S$values[,] <- VarCorr(lmer1)$ID
pt1$A$values['Y', 'lX'] <- fixef(lmer1)['X']
pt1$M$values[,'Y'] <- fixef(lmer1)['(Intercept)']
pt1$S$values['Y', 'Y'] <- getME(lmer1, "sigma")^2
pt1 <- mxRun(mxModel(pt1, mxComputeSequence(list(
mxComputeOnce('fitfunction', 'fit'),
mxComputeReportExpectation()))))
omxCheckCloseEnough(logLik(pt1), logLik(lmer1), 1e-6)
}
occa <- mxRun(occa)
# a tad better than lme, same as lmer
omxCheckCloseEnough(occa$output$fit, -1725.954, 1e-2)
|