File: MxEvalDefinitionVar.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (43 lines) | stat: -rw-r--r-- 1,672 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#
#   Copyright 2007-2018 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.


require(OpenMx)

set.seed(99)
data <- data.frame(x=rnorm(10), y=as.numeric(sample(1:2, size=10, replace=TRUE)))

for (toSortData in c(TRUE,FALSE)) {
  model <- mxModel('Test Definition Row Sorting',
                   mxMatrix('Full', 1, 2, values=0, free=TRUE, name='TwoMeans'),
                   mxMatrix('Full', 1, 1, values=1, free=FALSE, name='Var'),
                   mxAlgebra(TwoMeans[1, data.y], 'expMean'),
                   mxData(data, 'raw', sort=toSortData),
                   mxFitFunctionML(),
                   mxExpectationNormal('Var', 'expMean', dimnames='x')
  )
  
  fit <- mxRun(model)
  
  fit.means <- omxGetParameters(fit)
  obs.means <- c(mean(data[data$y==1,'x']), mean(data[data$y==2,'x']))
  
  omxCheckCloseEnough(fit.means, obs.means, 0.001)
  
  perRow <- sapply(1:10, function(row) mxEval(expMean, fit, defvar.row=row, compute=T))
  group <- apply(cbind(abs(perRow - fit.means[1]),
                       abs(perRow - fit.means[2])), 1, order)[1,]
  omxCheckEquals(data$y, group)
}