1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
#
# Copyright 2007-2020 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
library(OpenMx)
#Compare Nelder-Mead to the GD optimizer best at handling MxConstraints:
if(mxOption(NULL,"Default optimizer")!="SLSQP"){stop("SKIP")}
mxOption(key="feasibility tolerance", value = .001)
#The naive "soft" method only seems to work OK if EVERY vertex of the initial simplex is feasible...:
ism <- matrix(0.2,4,4) + diag(0.2,4)
colnames(ism) <- c("pred","pyellow","pgreen","pblue")
foo <- mxComputeNelderMead(iniSimplexMat=ism, nudgeZeroStarts=FALSE, xTolProx=1e-12, fTolProx=1e-8,eqConstraintMthd="soft")
#foo$verbose <- 5L
plan <- omxDefaultComputePlan()
plan$steps <- list(foo,plan$steps$RE)
#Run with SLSQP:
m1 <- mxModel(
"MultinomialWithLinearConstraints",
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pred",name="Pred",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pyellow",name="Pyellow",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pgreen",name="Pgreen",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pblue",name="Pblue",lbound=0,ubound=1),
mxAlgebra( -2*(43*log(Pred) + 22*log(Pyellow) + 20*log(Pgreen) + 15*log(Pblue)), name="fitfunc"),
mxAlgebra( cbind(-2*43/Pred,-2*22/Pyellow,-2*20/Pgreen,-2*15/Pblue), name="objgrad",
dimnames=list(NULL,c("pred","pyellow","pgreen","pblue"))),
mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad",numObs=100),
mxCI(c("pred","pyellow","pgreen","pblue")),
mxConstraint(Pred + Pyellow + Pgreen + Pblue - 1 == 0,name="indentifying")
)
m1run <- mxRun(m1)
summary(m1run)
m2 <- mxModel(
"MultinomialWithLinearConstraints",
plan,
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pred",name="Pred",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pyellow",name="Pyellow",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pgreen",name="Pgreen",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pblue",name="Pblue",lbound=0,ubound=1),
mxAlgebra( -2*(43*log(Pred) + 22*log(Pyellow) + 20*log(Pgreen) + 15*log(Pblue)), name="fitfunc"),
mxAlgebra( cbind(-2*43/Pred,-2*22/Pyellow,-2*20/Pgreen,-2*15/Pblue), name="objgrad",
dimnames=list(NULL,c("pred","pyellow","pgreen","pblue"))),
mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad",numObs=100),
mxCI(c("pred","pyellow","pgreen","pblue")),
mxConstraint(Pred + Pyellow + Pgreen + Pblue - 1 == 0,name="indentifying")
)
m2run <- mxRun(m2)
summary(m2run)
#The "soft" heuristic is now about as good as the default "GDsearch":
omxCheckCloseEnough(m1run$output$estimate, m2run$output$estimate, 1e-4)
#Run with Nelder-Mead, with different arguments:
ism3 <- ism
ism3[4,4] <- 0.46
#^^^Note that now, it is not the case that all of the initial vertices are feasible
colnames(ism3) <- c("pred","pyellow","pgreen","pblue")
foo3 <- mxComputeNelderMead(
iniSimplexMat=ism3, nudgeZeroStarts=FALSE, xTolProx=1e-12, fTolProx=1e-8, eqConstraintMthd="backtrack")
#foo3$verbose <- 5L
plan3 <- omxDefaultComputePlan()
plan3$steps <- list(foo3,plan3$steps$RE)
m3 <- mxModel(
"MultinomialWithLinearConstraints",
plan3,
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pred",name="Pred",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pyellow",name="Pyellow",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pgreen",name="Pgreen",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pblue",name="Pblue",lbound=0,ubound=1),
mxAlgebra( -2*(43*log(Pred) + 22*log(Pyellow) + 20*log(Pgreen) + 15*log(Pblue)), name="fitfunc"),
mxAlgebra( cbind(-2*43/Pred,-2*22/Pyellow,-2*20/Pgreen,-2*15/Pblue), name="objgrad",
dimnames=list(NULL,c("pred","pyellow","pgreen","pblue"))),
mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad",numObs=100),
mxCI(c("pred","pyellow","pgreen","pblue")),
mxConstraint(Pred + Pyellow + Pgreen + Pblue - 1 == 0,name="indentifying")
)
m3run <- mxRun(m3)
#The backtrack method isn't that helpful in this case:
summary(m3run)
#l1p:
foo4 <- mxComputeNelderMead(
iniSimplexMat=ism3, nudgeZeroStarts=FALSE, xTolProx=1e-12, fTolProx=1e-8, eqConstraintMthd="l1p")
#foo3$verbose <- 5L
plan4 <- omxDefaultComputePlan()
plan4$steps <- list(foo4,plan4$steps$RE)
m4 <- mxModel(
"MultinomialWithLinearConstraints",
plan4,
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pred",name="Pred",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pyellow",name="Pyellow",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pgreen",name="Pgreen",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pblue",name="Pblue",lbound=0,ubound=1),
mxAlgebra( -2*(43*log(Pred) + 22*log(Pyellow) + 20*log(Pgreen) + 15*log(Pblue)), name="fitfunc"),
mxAlgebra( cbind(-2*43/Pred,-2*22/Pyellow,-2*20/Pgreen,-2*15/Pblue), name="objgrad",
dimnames=list(NULL,c("pred","pyellow","pgreen","pblue"))),
mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad",numObs=100),
mxCI(c("pred","pyellow","pgreen","pblue")),
mxConstraint(Pred + Pyellow + Pgreen + Pblue - 1 == 0,name="indentifying")
)
m4run <- mxRun(m4)
#The l1p isn't that helpful in this case, either:
summary(m4run)
#Penalized fit should be slightly greater than raw fit:
omxCheckTrue(m4run$compute$steps[[1]]$output$penalizedFit > m4run$output$fit)
#GDsearch:
foo5 <- mxComputeNelderMead(
iniSimplexMat=ism3, nudgeZeroStarts=FALSE, xTolProx=1e-12, fTolProx=1e-8, eqConstraintMthd="GDsearch")
#foo3$verbose <- 5L
plan5 <- omxDefaultComputePlan()
plan5$steps <- list(foo5,plan5$steps$RE)
m5 <- mxModel(
"MultinomialWithLinearConstraints",
plan5,
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pred",name="Pred",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pyellow",name="Pyellow",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pgreen",name="Pgreen",lbound=0,ubound=1),
mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0.25,labels="pblue",name="Pblue",lbound=0,ubound=1),
mxAlgebra( -2*(43*log(Pred) + 22*log(Pyellow) + 20*log(Pgreen) + 15*log(Pblue)), name="fitfunc"),
mxAlgebra( cbind(-2*43/Pred,-2*22/Pyellow,-2*20/Pgreen,-2*15/Pblue), name="objgrad",
dimnames=list(NULL,c("pred","pyellow","pgreen","pblue"))),
mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad",numObs=100),
mxCI(c("pred","pyellow","pgreen","pblue")),
mxConstraint(Pred + Pyellow + Pgreen + Pblue - 1 == 0,name="indentifying")
)
m5run <- mxRun(m5)
#The GDsearch method actually gets the answer:
summary(m5run)
omxCheckCloseEnough(m1run$output$estimate, m5run$output$estimate, 1e-4)
|