1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
#
# Copyright 2007-2018 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
library(OpenMx)
#Compare Nelder-Mead to the GD optimizer best at handling MxConstraints:
if(mxOption(NULL,"Default optimizer")!="SLSQP"){stop("SKIP")}
#The naive "soft" inequality method works reasonably well for inequalities:
foo <- mxComputeNelderMead(iniSimplexType="right", nudgeZeroStarts=FALSE,
ineqConstraintMthd="soft", doPseudoHessian=T)
#foo$verbose <- 5L
plan <- omxDefaultComputePlan()
plan$steps <- list(foo,plan$steps$RE)
#Run with SLSQP:
testmod1 <- mxModel(
"NoJacobians",
mxMatrix(type="Full",nrow=3,ncol=1,free=T,values=0.1,labels=paste("x",1:3,sep=""),lbound=0,name="X"),
mxAlgebra( 3*X[1,1] + X[2,1] + X[3,1], name="fitfunc"),
mxMatrix(type="Full",nrow=1,ncol=3,free=F,values=c(3,1,1),name="objgrad",dimnames=list(NULL,paste("x",1:3,sep=""))),
mxConstraint(2*X[1,1] + X[2,1] + X[3,1] - 2 < 0,name="c1"),
mxConstraint(X[1,1] - X[2,1] - X[3,1] + 1 < 0,name="c2"),
mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad")
)
testrun1 <- mxRun(testmod1)
summary(testrun1)
testrun1$output$evaluations
testrun1$output$fit
testrun1$output$constraintFunctionValues
#Run with custom NM compute plan:
testmod2 <- mxModel(
"NoJacobians",
plan,
mxMatrix(type="Full",nrow=3,ncol=1,free=T,values=c(0,0.5,0),labels=paste("x",1:3,sep=""),lbound=0,name="X"),
mxAlgebra( 3*X[1,1] + X[2,1] + X[3,1], name="fitfunc"),
mxMatrix(type="Full",nrow=1,ncol=3,free=F,values=c(3,1,1),name="objgrad",dimnames=list(NULL,paste("x",1:3,sep=""))),
mxConstraint(2*X[1,1] + X[2,1] + X[3,1] - 2 < 0,name="c1"),
mxConstraint(X[1,1] - X[2,1] - X[3,1] + 1 < 0,name="c2"),
mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad")
)
testrun2 <- mxRun(testmod2)
summary(testrun2)
testrun2$output$evaluations
testrun2$output$fit
#c2 is barely satisfied within feasibility tolerance:
mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun2, T)
omxCheckCloseEnough(testrun2$output$fit+mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun2, T), testrun1$output$fit, 1e-7)
#Backtracking:
foo <- mxComputeNelderMead(iniSimplexType="right", nudgeZeroStarts=FALSE, doPseudoHessian=T,
ineqConstraintMthd="eqMthd", eqConstraintMthd="backtrack")
#foo$verbose <- 5L
plan <- omxDefaultComputePlan()
plan$steps <- list(foo,plan$steps$RE)
testmod3 <- mxModel(
"NoJacobians",
plan,
mxMatrix(type="Full",nrow=3,ncol=1,free=T,values=0.1,labels=paste("x",1:3,sep=""),lbound=0,name="X"),
mxAlgebra( 3*X[1,1] + X[2,1] + X[3,1], name="fitfunc"),
mxMatrix(type="Full",nrow=1,ncol=3,free=F,values=c(3,1,1),name="objgrad",dimnames=list(NULL,paste("x",1:3,sep=""))),
mxConstraint(2*X[1,1] + X[2,1] + X[3,1] - 2 < 0,name="c1"),
mxConstraint(X[1,1] - X[2,1] - X[3,1] + 1 < 0,name="c2"),
mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad")
)
mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testmod3, T) #<--More than feas tolerance
testrun3 <- mxRun(testmod3)
summary(testrun3)
testrun3$output$evaluations
testrun3$output$fit
#c2 is barely satisfied within feasibility tolerance:
mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun3, T)
omxCheckCloseEnough(testrun3$output$fit+mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun3, T), testrun1$output$fit, 1e-7)
#l1p:
foo <- mxComputeNelderMead(iniSimplexType="right", nudgeZeroStarts=FALSE, doPseudoHessian=T,
ineqConstraintMthd="eqMthd", eqConstraintMthd="l1p")
#foo$verbose <- 5L
plan <- omxDefaultComputePlan()
plan$steps <- list(foo,plan$steps$RE)
testmod4 <- mxModel(
"NoJacobians",
plan,
mxMatrix(type="Full",nrow=3,ncol=1,free=T,values=0.1,labels=paste("x",1:3,sep=""),lbound=0,name="X"),
mxAlgebra( 3*X[1,1] + X[2,1] + X[3,1], name="fitfunc"),
mxMatrix(type="Full",nrow=1,ncol=3,free=F,values=c(3,1,1),name="objgrad",dimnames=list(NULL,paste("x",1:3,sep=""))),
mxConstraint(2*X[1,1] + X[2,1] + X[3,1] - 2 < 0,name="c1"),
mxConstraint(X[1,1] - X[2,1] - X[3,1] + 1 < 0,name="c2"),
mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad")
)
testrun4 <- mxRun(testmod4)
summary(testrun4)
omxCheckCloseEnough(testrun4$output$fit+mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun4, T), testrun1$output$fit, 1e-7)
#PseudoHessian shouldn't be calculated when using l1p:
omxCheckTrue(is.null(testrun4$compute$steps[[1]]$output$pseudoHessian))
#GDsearch:
foo <- mxComputeNelderMead(iniSimplexType="right", nudgeZeroStarts=FALSE, doPseudoHessian=T,
ineqConstraintMthd="eqMthd", eqConstraintMthd="GDsearch")
#foo$verbose <- 5L
plan <- omxDefaultComputePlan()
plan$steps <- list(foo,plan$steps$RE)
testmod5 <- mxModel(
"NoJacobians",
plan,
mxMatrix(type="Full",nrow=3,ncol=1,free=T,values=0.1,labels=paste("x",1:3,sep=""),lbound=0,name="X"),
mxAlgebra( 3*X[1,1] + X[2,1] + X[3,1], name="fitfunc"),
mxMatrix(type="Full",nrow=1,ncol=3,free=F,values=c(3,1,1),name="objgrad",dimnames=list(NULL,paste("x",1:3,sep=""))),
mxConstraint(2*X[1,1] + X[2,1] + X[3,1] - 2 < 0,name="c1"),
mxConstraint(X[1,1] - X[2,1] - X[3,1] + 1 < 0,name="c2"),
mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad")
)
testrun5 <- mxRun(testmod5)
summary(testrun5)
omxCheckCloseEnough(testrun5$output$fit+mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun5, T), testrun1$output$fit, 1e-7)
|