File: NelderMeadTest--ineqConstraints.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (133 lines) | stat: -rw-r--r-- 5,775 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#
#   Copyright 2007-2018 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

library(OpenMx)
#Compare Nelder-Mead to the GD optimizer best at handling MxConstraints:
if(mxOption(NULL,"Default optimizer")!="SLSQP"){stop("SKIP")}
#The naive "soft" inequality method works reasonably well for inequalities:
foo <- mxComputeNelderMead(iniSimplexType="right", nudgeZeroStarts=FALSE, 
													 ineqConstraintMthd="soft", doPseudoHessian=T)
#foo$verbose <- 5L
plan <- omxDefaultComputePlan()
plan$steps <- list(foo,plan$steps$RE)

#Run with SLSQP:
testmod1 <- mxModel(
	"NoJacobians",
	mxMatrix(type="Full",nrow=3,ncol=1,free=T,values=0.1,labels=paste("x",1:3,sep=""),lbound=0,name="X"),
	mxAlgebra( 3*X[1,1] + X[2,1] + X[3,1], name="fitfunc"),
	mxMatrix(type="Full",nrow=1,ncol=3,free=F,values=c(3,1,1),name="objgrad",dimnames=list(NULL,paste("x",1:3,sep=""))),
	mxConstraint(2*X[1,1] + X[2,1] + X[3,1] - 2 < 0,name="c1"),
	mxConstraint(X[1,1] - X[2,1] - X[3,1] + 1 < 0,name="c2"),
	mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad")
)
testrun1 <- mxRun(testmod1)
summary(testrun1)
testrun1$output$evaluations
testrun1$output$fit
testrun1$output$constraintFunctionValues

#Run with custom NM compute plan:
testmod2 <- mxModel(
	"NoJacobians",
	plan,
	mxMatrix(type="Full",nrow=3,ncol=1,free=T,values=c(0,0.5,0),labels=paste("x",1:3,sep=""),lbound=0,name="X"),
	mxAlgebra( 3*X[1,1] + X[2,1] + X[3,1], name="fitfunc"),
	mxMatrix(type="Full",nrow=1,ncol=3,free=F,values=c(3,1,1),name="objgrad",dimnames=list(NULL,paste("x",1:3,sep=""))),
	mxConstraint(2*X[1,1] + X[2,1] + X[3,1] - 2 < 0,name="c1"),
	mxConstraint(X[1,1] - X[2,1] - X[3,1] + 1 < 0,name="c2"),
	mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad")
)
testrun2 <- mxRun(testmod2)
summary(testrun2)
testrun2$output$evaluations
testrun2$output$fit
#c2 is barely satisfied within feasibility tolerance:
mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun2, T)

omxCheckCloseEnough(testrun2$output$fit+mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun2, T), testrun1$output$fit, 1e-7)

#Backtracking:
foo <- mxComputeNelderMead(iniSimplexType="right", nudgeZeroStarts=FALSE, doPseudoHessian=T,
													 ineqConstraintMthd="eqMthd", eqConstraintMthd="backtrack")
#foo$verbose <- 5L
plan <- omxDefaultComputePlan()
plan$steps <- list(foo,plan$steps$RE)

testmod3 <- mxModel(
	"NoJacobians",
	plan,
	mxMatrix(type="Full",nrow=3,ncol=1,free=T,values=0.1,labels=paste("x",1:3,sep=""),lbound=0,name="X"),
	mxAlgebra( 3*X[1,1] + X[2,1] + X[3,1], name="fitfunc"),
	mxMatrix(type="Full",nrow=1,ncol=3,free=F,values=c(3,1,1),name="objgrad",dimnames=list(NULL,paste("x",1:3,sep=""))),
	mxConstraint(2*X[1,1] + X[2,1] + X[3,1] - 2 < 0,name="c1"),
	mxConstraint(X[1,1] - X[2,1] - X[3,1] + 1 < 0,name="c2"),
	mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad")
)
mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testmod3, T) #<--More than feas tolerance
testrun3 <- mxRun(testmod3)
summary(testrun3)
testrun3$output$evaluations
testrun3$output$fit
#c2 is barely satisfied within feasibility tolerance:
mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun3, T)

omxCheckCloseEnough(testrun3$output$fit+mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun3, T), testrun1$output$fit, 1e-7)


#l1p:
foo <- mxComputeNelderMead(iniSimplexType="right", nudgeZeroStarts=FALSE, doPseudoHessian=T,
													 ineqConstraintMthd="eqMthd", eqConstraintMthd="l1p")
#foo$verbose <- 5L
plan <- omxDefaultComputePlan()
plan$steps <- list(foo,plan$steps$RE)

testmod4 <- mxModel(
	"NoJacobians",
	plan,
	mxMatrix(type="Full",nrow=3,ncol=1,free=T,values=0.1,labels=paste("x",1:3,sep=""),lbound=0,name="X"),
	mxAlgebra( 3*X[1,1] + X[2,1] + X[3,1], name="fitfunc"),
	mxMatrix(type="Full",nrow=1,ncol=3,free=F,values=c(3,1,1),name="objgrad",dimnames=list(NULL,paste("x",1:3,sep=""))),
	mxConstraint(2*X[1,1] + X[2,1] + X[3,1] - 2 < 0,name="c1"),
	mxConstraint(X[1,1] - X[2,1] - X[3,1] + 1 < 0,name="c2"),
	mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad")
)
testrun4 <- mxRun(testmod4)
summary(testrun4)
omxCheckCloseEnough(testrun4$output$fit+mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun4, T), testrun1$output$fit, 1e-7)
#PseudoHessian shouldn't be calculated when using l1p:
omxCheckTrue(is.null(testrun4$compute$steps[[1]]$output$pseudoHessian))


#GDsearch:
foo <- mxComputeNelderMead(iniSimplexType="right", nudgeZeroStarts=FALSE, doPseudoHessian=T,
													 ineqConstraintMthd="eqMthd", eqConstraintMthd="GDsearch")
#foo$verbose <- 5L
plan <- omxDefaultComputePlan()
plan$steps <- list(foo,plan$steps$RE)

testmod5 <- mxModel(
	"NoJacobians",
	plan,
	mxMatrix(type="Full",nrow=3,ncol=1,free=T,values=0.1,labels=paste("x",1:3,sep=""),lbound=0,name="X"),
	mxAlgebra( 3*X[1,1] + X[2,1] + X[3,1], name="fitfunc"),
	mxMatrix(type="Full",nrow=1,ncol=3,free=F,values=c(3,1,1),name="objgrad",dimnames=list(NULL,paste("x",1:3,sep=""))),
	mxConstraint(2*X[1,1] + X[2,1] + X[3,1] - 2 < 0,name="c1"),
	mxConstraint(X[1,1] - X[2,1] - X[3,1] + 1 < 0,name="c2"),
	mxFitFunctionAlgebra(algebra="fitfunc",gradient="objgrad")
)
testrun5 <- mxRun(testmod5)
summary(testrun5)
omxCheckCloseEnough(testrun5$output$fit+mxEval(X[1,1] - X[2,1] - X[3,1] + 1, testrun5, T), testrun1$output$fit, 1e-7)