1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
|
#
# Copyright 2007-2018 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
library(OpenMx)
dn <- paste("m",1:2, sep="")
dataCov <- matrix(c(1,.2,.2,1.5), nrow=2, dimnames=list(dn,dn))
dataMeans <- c(-.2, .3)
names(dataMeans) <- dn
n2 <- mxModel("normal2",
mxData(observed=dataCov, type="cov",
means=dataMeans, numObs=35),
mxMatrix(name="cov", "Symm", 2, 2, free=T, values = c(1, 0, 1),
labels = c("var1", "cov12", "var2"), dimnames=list(dn,dn)),
mxMatrix(name="mean", "Full", 1, 2, free=T, labels=dn, dimnames=list(NULL,dn)),
mxFitFunctionML(),
mxExpectationNormal("cov", "mean"))
plan <- mxComputeSequence(list(
mxComputeNewtonRaphson(),
mxComputeOnce('fitfunction', 'information', 'hessian'),
mxComputeStandardError(),
mxComputeHessianQuality(),
mxComputeReportDeriv()))
for (retry in 1:2) {
if (retry == 2) n2 <- mxModel(n2, plan)
n2Fit <- mxRun(n2)
omxCheckCloseEnough(n2Fit$output$fit, 81.216, .01)
omxCheckCloseEnough(n2Fit$cov$values, (34/35) * dataCov, 1e-4)
omxCheckCloseEnough(c(n2Fit$mean$values), dataMeans, 1e-4)
omxCheckCloseEnough(log(n2Fit$output$conditionNumber), 1.63, .2)
omxCheckCloseEnough(c(n2Fit$output$standardErrors),
c(0.232, 0.203, 0.348, 0.166, 0.204), .01)
}
|